
Hierarchical Summarization for Easy Video Applications

Nithya Sudhakar & Sharat Chandran
Dept. of Computer Science & Engg.

IIT Bombay
{mnitya | sharat } @cse.iitb.ac.in

www.cse.iitb.ac.in/vigil

Abstract

With growing use of videos, demand on retrieval
video applications has become intense. Most existing
methods that analyze the semantics of a video build
specific models; for example, ones that aim at event de-
tection, or targeted video albumization. These might be
called as application specific works and useful in their
own right. In this paper, however, we propose a video
abstraction framework that unifies the creation of var-
ious applications, rather than the application itself.

Specifically, we present a dictionary summarization
of a video that provides abstractions at various hier-
archical levels such as pixels, frames, shots, and the
complete video. We illustrate the usability of our model
with four different “apps”.

1 Introduction

Say you want to find an action scene of your favorite
hero. Or want to watch a romantic movie with a happy
ending. Or say you saw a interesting trailer, and want
to watch related movies. Finding these videos in the
ocean of videos available has become noticeably diffi-
cult, and requires a trustworthy friend or editor. Can
we quickly design computer “apps” that act like this
friend?
This work presents an abstraction for making this

happen. We present a model which summarizes the
video in terms of dictionaries at different hierarchical
levels — pixel, frame, and shot. This makes it easier
for creating applications that summarizes videos, and
address complex queries like the ones listed above.
The abstraction leads to a toolkit that we use to

create several different applications demonstrated in
Figure 1. In the “Suggest a Video” application, from a
set of action movies, threeMatrix sequels were given as
input; the movie Terminator was found to be the clos-
est suggested match. In the “Story Detection” applica-
tion, the movie A Walk to Remember is segmented into
three parts; user experience suggests that these parts
correspond to prominent changes in the twist and plot
of the movie. In the “Audio Video Mix” application,
given a song with a video as a backdrop, the applica-
tion finds another video with a similar song and video;
the application thus can be used to generate a “remix”
for the input song. This application illustrates the abil-
ity of the data representation to find a video which
closely matches both content and tempo.

1.1 Related Work

In creating dictionaries, soft quantization [1] ac-
counting distance from a number of codewords is con-
sidered for classifying scenes; Fisher Vector is then used

Figure 1. Retrieval applications designed using
our Hierarchical Dictionary Summarization method.
“Suggest a Video” suggests Terminator for Matrix
sequels. “Story Detection” segments a movie into log-
ical turning points in the plot of the movie A Walk to
Remember. “Audio Video Mix” generates a “remix”
song from a given set of music videos.

in classification [3, 2] leading to significant improve-
ment over Bag Of word methods.
Similar to [3, 2], we use local descriptors and form

visual dictionaries. However unlike [3, 2], we preserve
more information instead of extracting only specific in-
formation. In addition to building dictionary at pixel
level, we extend this dictionary to frame and shot level,
forming a hierarchical dictionary. Having similarity in-
formation available at various granularities is the key
to creating applications that need features at the level
desired.

1.2 Contributions

In this paper, we propose a Hierarchical Dictionary
Model (termed H-Video) to make the task of creat-
ing application easier. Our method learns semantic
dictionaries at three different levels — pixel patches,
frames, and shots. Video is represented in the form of
learned dictionary units that reveal semantic similarity
and video structure. The main intention of this model
is to provide these semantic dictionaries, so that com-
parison of video units at different levels in the same
video and different videos becomes easier.
The benefits of H-Video include the following
(i) The model advocates run-time leveraging of prior

offline processing time. As a consequence, applications
run fast.
(ii) The model is built in an unsupervised fashion.

As no application specific assumption is made, many
retrieval applications can use this model and its fea-
tures. This can potentially save enormous amount of
computation time spent in learning.

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-10

69



Figure 2. Illustration of the H-Video Abstraction

(iii) The model represents learned information us-
ing a hierarchical dictionary. This allows video to be
represented as indexes to elements in the video. This
makes it easier for the developer of a new retrieval
applications as similarity information is available as
a one dimensional array. In other words, our model
doesn’t demand deep video understanding background
from application developers.
(iv) We have illustrated our model through several

applications. Figure 1 illustrates these applications.

2 Methodology

Overview: Our model first extracts local descrip-
tors like colour and edge from pixels patches. (Color
and edge descriptors are simply examples.) We then
build a dictionary, termed H1 dictionary, out of these
features. At this point, the video could be, in princi-
ple, be represented in terms of this H1 dictionary. We
refer each frame of this representation as an H1 frame.
We then extract slightly higher level features such as
the histogram of the H1 dictionary units, the number
of regions from these H1 frames and so on, and form a
new H2 dictionary. The H2 dictionary is yet another
representation of the video and captures the type of
objects and their distribution in the scene; in this way,
it captures the nature of the scene. The video could
also be represented using this H2 dictionary. We refer
each shot in this representation as an H2 shot. Fur-
ther, we extract features based on the histogram and
position of H2 dictionary units and build yet another
structure, the H3 dictionary. This dictionary repre-
sents the type of shots occurring in the video. The
video is now represented in terms of this H3 dictionary
to form H3 video. We now present some details.
H1 Formation: For forming the H1 dictionary, at

each pixel, the nearby 8 × 8 window of pixels are con-
sidered. We extract local descriptors from the moving
window using pyramidal Gaussian features, neighbor-
hood layout features, and edge filters.
As an example, we use the list of filters listed in

Fig. 3, which we have found to be effective in captur-
ing the colour & shape information. A different set of
features like SIFT or HOG can also be used based on
the requirement of the application.
These features are extracted from the complete

video. We use principal component analysis to de-
termine the number of clusters. The top principal

Figure 3. Pixel-Level Feature Extraction Filters

component is chosen based on the allowed error. We
then use k-means to obtain the H1 dictionary. How-
ever as clustering very long videos could be time con-
suming, one alternative is to do this process in vari-
ous stages. For example, we first form H1 dictionary
for each frame, combine dictionaries from a sequence
of frames, and do clustering to form a more represen-
tative dictionary. Several dictionaries from temporal
stages in the video are then combined to form a global
H1 dictionary. This step-by-step approach of building
dictionary makes this easy to compute and scalable.

Once the global H1 dictionary is available we pro-
cess the video again to remove duplicates, or near du-
plicates to form a less redundant dictionary-based rep-
resentation. The complete video is then represented
using these dictionary units (left hand side of Fig. 2).
Each frame in this representation is referred as an H1
frame. H1 frames may also be thought of as a segmen-
tation, but in addition to the segmentation, the dictio-
nary units have the information about the nature of the
objects.

H2 Formation: From each H1 frame, conglomer-
ate features like a histogram, the number of regions
and the distance between them are captured. A sub-
set of these features can also be chosen based on the
application of these features. Similar to H1 dictionary
formation, these features are clustered to form an H2
dictionary. We use the step-by-step dictionary build-
ing approach, wherein first dictionaries for a sequence
of frames is built and they are clustered again to form
the global dictionary.

Using the H2 dictionary, we represent the video in
terms of H2 units. We refer each shot in this represen-
tation as an H2 shot. The change in the H2 units cor-
respond to dynamically changing shots, whereas more
or less similar H2 units corresponds to relatively static
content. Representing video as a one dimensional array

70



of dictionary units makes the comparison of video ele-
ments easier. H2 units capture higher level details and
are simpler for comparison purposes. Generally infor-
mation needed by similarity application will be captured
at this level.
H3 Formation: Features capturing distribution of

H2 units like histogram, and distance between blocks
are considered. These extracted features are clustered
to form H3 dictionary, wherein first the dictionary is
computed at shot level, and the dictionary units are
again clustered to form global H3 dictionary. Using
this dictionary, the video is represented as a one di-
mensional sequence of H3 units, where each unit cor-
responds to shot. This representation will be typically
useful in a applications involving a huge collection of
videos; applications can quickly narrow down to the
correct interest group. This level will also be useful in
segmentation and classification applications. For ex-
ample while classifying shots of lecture video into pro-
fessor, student and board slides, this level will be of
helpful.
Some applications require videos to be compared at

multiple dictionary levels. For this purpose, we clus-
ter H1 clusters of more than one input videos in the
database together, and construct a H1 dictionary at
the database level, rather than an individual video.
Using this notion of global H1 dictionary, the H2 units
and H3 units are generated again. (Input videos from
the database are randomly sampled.)

3 Experiments

In this section, we first evaluate the individual per-
formance of the constituents of H-Video model itself.
Next, in creating dictionaries, we compare the usage
of popular features such as SIFT. Finally the perfor-
mance of applications that may use more than one of
the three levels, H1, H2, or H3, are evaluated.
Data: We have collected around 100 movie trailer
from youtube, twenty five full length movie films, and
a dozen music video clips.
Computational Time: Our implementation is in
Matlab. Typically a full-length movie takes around
two hours for feature extraction. Building local dictio-
naries for a movie takes around 10 hours. Building the
global dictionary, which is extracted from local dictio-
nary of multiple videos takes around 6 hours. Note
that building local dictionaries and a global dictionary
(left hand side of Fig. 2) are one time jobs. Once these
are built, the dictionaries are directly used to create
the right hand side of Fig. 2. In other words, relevant
model building typically takes two hours which is no
different from the average runtime of the video itself.
Once the model is constructed, each access operation
typically takes only around 10 seconds per video.

3.1 Individual Evaluation of H1 and H2

For illustrating the effectiveness of H1 dictionary,
we considered the classification problem and collected
videos from the category “car”, “cricket” and “news
anchor”. We have collected 6 videos from each cate-
gory summing up to total of 18 videos. We computed
H1 dictionary for each of these videos, and formed a
global H1 dictionary for the given dataset and repre-
sented all videos in terms of this global dictionary. For

Figure 4. Classification using only H2. With only
limited information, and with smaller allowed error,
fine details were captured. With larger allowed error,
broad categories were captured.

testing purposes we randomly selected two videos from
each category for training data and remaining as test-
ing set and test set against one of the three categories.
The recall and precision of classification using only

H1 is provided in Table 1.

Table 1. Classification using only H1. With lim-
ited information, we are able to glean classifica-
tion hints.

Category Precision Recall
Car 1.00 0.75
Cricket 0.67 1.00
News Anchor 1.00 0.75

To evaluate the effectiveness of only H2 dictionary
units, we have built our model on a TV interview show;
these had scenes of only individuals, as well as people
groups. When we built H2 dictionaries with allowed
error as “top principal component / 1000”, we got six
categories capturing different scenes, people and their
positions. As we relaxed the allowed error, it resulted
in two categories between individual scene and group
of people. This result is presented in Fig. 4. Hence
applications can tune allowed error parameters to suit
their requirement.

3.2 Evaluation of Alternate Features

In this section we evaluate popular features like
SURF, SIFT and contrast with the color & edge fea-
tures used in this paper. Given any feature set, one
may do a “direct comparison” (which will take longer
time), or do our proposed H-Video model-based com-
parison (which will take far lesser time). This exper-
iment is performed on the “Suggest-a-video” problem
using only trailers of movies as the database. The re-
sult is presented in Table 2.
When the H-Video model is used, we use the H2 as

the basis of comparison. We observe that the use of
the hierarchical model helped improving the accuracy

Table 2. Video suggestion using popular features

Methods Direct H-Model Percentage
Comparison Improvement

SURF 54% 54% 0%
SIFT 29% 53% 83%
Color, Edge 48% 59% 23%

71



for SIFT and color & edge features; the accuracy was
almost the same when using SURF features. In pro-
ducing these statistics, for the ground truth we have
used information available on imdb.com. One problem
in using imdb.com is that the truth is limited to the
top twelve only. We therefore have added transpose
and transitive relationships as well. (In transpose re-
lationships, if a movie A is deemed to be related to B,
we mark B as related to A. In transitivity, if a movie
A is related to B, and B is related to C, then we mark
A as related to both B and C. The transitive closure
is maintained via recursion.)

3.3 Evaluation of Video Classification

We have considered three genres for video classifica-
tion. We took the category annotation of 100 movie
trailers and for each category considered 30% of the
data for training and remaining as testing set. We have
build the H-video for these videos, extracted H2 and
H3 representations, and classified using the random
forest model. Example output is shown in Fig. 5.

Figure 5. Sample Result of classifying movie trailers
for categories Drama, Action and Romance. In most
of the cases, our model has classified movie trailers
correctly.

3.4 Evaluation of Logical Turning Point Detec-
tion

We define Logical Turning Point in the video as a
point where the characteristics of objects in the video
change drastically. Detecting such places helps in sum-
marizing the video effectively.
We consider shots within a moving window of 5

shots. We compute the semantic overlap of H1 and H2
units between the shots. When the amount of overlap
between shots is low in a specific window of shots, we
detect that as a logical turning point.
Typically drama movies have three logical parts.

First the characters are introduced, then they get to-
gether and then a punchline is presented towards the
end. Considering this as ground truth, we validated
the detected logical turning points. The logical turn-
ing points were detected with precision of 1.0 and recall
of 0.75.

3.5 Evaluation of Potential Remix Candidates

Remix is the process of generating a new video
from existing videos by either changing audio or video.

Figure 6. Sample frames from identified remix candi-
dates is presented. In each sets, top row correspond
to a original video song and the second row corre-
sponds to the remix candidate. The content and se-
quencing of the first and second rows match suggest-
ing the effectiveness of our method.

Remixes are typically performed on video songs for a
variation on the entertainment needs. The remix can-
didates need to have similar phase in the change of the
scene to generate a pleasing output.
We use cross correlation of H2 units to identify that

they have same phase of change. Once the closest can-
didate is identified, we replace the remake candidate’s
audio with the original video’s audio.
We have conducted experiments on 20 song clips,

where the aim is to find best remix candidates. Our
algorithm found two pairs of songs which are best can-
didates for remix in the given set. Sample frames from
matched video are presented in Fig. 6.

4 Conclusion

In traditional video retrieval systems, relevant fea-
tures are extracted from the video and applications
are built using the extracted features. For multimedia
database retrieval systems, there are typically plethora
of applications that would be required for satisfying
different user needs. A unified model which uses fun-
damental notions of similarity would therefore be valu-
able to reduce computation time for building applica-
tions.
In this paper, we have proposed a novel model called

H-Video, which provides the semantic information
needed by retrieval applications. In summary, both
creation (programmer time) and runtime (computer
time) of the resulting applications are reduced. First,
our model provides semantic information of video in a
simple way, so that it is easy for programmers. Second,
due to our suggested pre-processing of long video data,
runtime is reduced. We have built four applications as
examples to demonstrate our model.

References

[1] J. C. Gemert, J. M. Geusebroek, C. J. Veenman, and
A. W. Smeulders.: “Kernel codebooks for scene cate-
gorization,” ECCV, pp.696-709, 2008.

[2] H. Jegou, M. Douze, C. Schmid, and P. Perez.: “Ag-
gregating local descriptors into a compact image rep-
resentation,” CVPR, pp.3304-3311, 2010.

[3] C. Sun and R. Nevatia: “Large-scale web video event
classification by use of fisher vectors,” WACV, pp.15-
22, 2013.

72


