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Abstract

High-quality modeling method is required for the vir-
tual reconstruction of ruins using mixed reality. Stone
floor is one of the important parts of the ruins.In or-
der to render the stone floor realistically, it requires
a high-quality model produced by excavation informa-
tion. For the reconstruction of the lacked part of stone
floor, shape modifying method while maintaining a
shape characteristic and the distribution of the original
is required. In this paper, we propose a shape-forming
method to reconstruct the stone floor from excavated
data by using Implicit Polynomial(IP). IP which is the
implicit function curved surface can perform interpo-
lation and blending easily.

1 Introduction

Recently, the mixed reality has been focused to ex-
hibit the virtual reconstruction of ruins. It can su-
perimpose the archaeological building in ancient times
on current landscape using Head Mounted Display or
smart phones. Fig.1 shows one of the virtual recon-
structions of ruins. To show buildings in ancient times
as mixed reality, buildings are reconstructed by CGs
based on the archaeological evidence. However, the
stone floor that is ground in Fig. 1 does not have re-
ality, because of the simple texture.

Most of ruins lost their own parts because of aging
or disaster to name a few. Therefore, supplementing
the lost part as CG has a big role to show the an-
cient scene in the present time. To show more accurate
scenes, not only reproduction of building but also the
reconstruction of the background, such as stone floor,
is important

In this paper, we propose a shape-forming method to
reconstruct the stone floor excavated data by Implicit
Polynomial(IP). We reconstruct the stone floor from
shapes of each stones and excavation information like
gap among stones. Depending on gaps, we determine
the paved degree and transform the shape of the origi-
nal stone smoothly. We achieve the smooth interpola-
tion between original stones area and shortage area by

Figure 1. Virtual reconstruction of the ruin

characteristics of the IP. We express natural distribu-
tion using Laguerre Voronoi-diagram to control stone
shortage area. Furthermore, our method can handle
not only 2D model but also 3D model because of the
feature of the IP. In this paper, we focus on discussing
2D modeling.

2 Related works

In civil engineering and computer graphics fields, the
technique to generate the stone-distribution model was
proposed. Miyata et al.[1] achieved this by the closest
packing of square particles and rearranged the shape
of each particle. In this method, unnatural gap and
heap occurred because the shape and the position of
stones are set independently.
We have three advantages to use a Voronoi-diagram

to control the distribution among stones.

1. Center gravity of stones are usable to Voronoi tes-
sellation.

2. The shape of each Voronoi regions is similar to
stone shapes because each regions are convex poly-
gon.

3. We can adjust gaps later.
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Table 1. Comparison between related works and
proposed method

Peytavie et al. Mollon et al. Proposed

3D Possible Impossible Possible

Voronoi
Diagram

Multiplicatively

Weighted

Voronoi Voronoi

Laguerre

Voronoi

Shape Fitting Erosion
Fourier

Descriptor IP
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Figure 2. Issue of IP Fitting

Peytavie et al.[2] proposed a method to generate
stonework using the multiplicatively weighted Voronoi-
diagram. Eq.(1) shows Voronoi diagram.

R(S;Pi) = {P ∈ Rd | l(P, Pi) < l(P, Pj), j �= i} (1)

l(P,Q) is distance between point P and point Q. S =
{P1, P2, ..., Pn} is set of the generatrices in the space
Rd. R(S;Pi) is Voronoi-diagram of generatirices Pi. It
is class of P which is nearest point in S. In contrast
the distance of the multiplicatively weighted Voronoi-
diagram is shown Eq.(2).

l(P, Pi) =
1

gi
{(x− xi)

2 + (y − yi)
2} (2)

It can regulate the size of the stone by g.
Mollon .e.g.[3] studies the generation of a model

spreading powder and granular material such as the
sand. It represents the contour by Fourier descriptor.
It is used for the setting of the shape and gap control
of the volonoi-diagram.

Comparison between related works and our proposed
method is shown in Table 1. Petavie’s method can
generate 3D model, but is difficult to modify the shape
of stone to desired regions. Mollon’s method can gen-
erate the desired stone shape, but is not suitable for
distribution of 3D model. Our proposed method re-
alizes generation of 3D model and free transformation
using IP and Laguerre Voronoi-diagram.

3 IP Fitting

In order to naturally represent the stone excavation
information, in this paper we propose to use an im-
plicit polynomial (IP) to interpolate two shape con-
tours where the one contains the other one (Fig. 2).

3.1 Implicit Polynomial(IP)

IP is an implicit function defined by the polynomial
of degree n

f(x) =
∑

0≤i,j,k,i+j+k≤n

aijkx
iyjzk = 0, (3)

where aijk is the coefficient of polynomial f . The sur-
face of an object can be represented by f(x) = 0. For
example, an unit sphere can be represented by a quar-
tic as:

f(x) = −1 + x2 + y2 + z2 = 0. (4)

f(x) can be rewritten in the inner-product form of
two vectors:

f(x) =
(
1 x · · · zn

)
︸ ︷︷ ︸

m(x)
T

(
a000 a100 · · · a00n

)T
︸ ︷︷ ︸

a

, (5)

where m(x) is monomial vector and a is coefficient vec-
tor. Given the point cloud on object surface {xi}li=1,
IP fitting algorithm finds the best coefficients that sat-
isfy f(x) = 0, i.e., it minimizes the distance between
point cloud and zero set of the IP w.r.t. coefficients.
This problem can be formulated as a linear equation
system:

Ma = b, (6)

where M =
(
m(x1) m(x2) · · · m(xl)

)T
,and b is a

zero vector. Since Eq.6 is an over-determined linear
system, it can be solved by least squares method: a =
(MTM)−1MT b. To avoid the zero solution, we adopt
3L method [4] that introduces two linear constraints by
generating two extra parallel layers around the original
point cloud: f(x+) = +e and f(x−) = −e, where
x+ and x− are the points on outer and inner layers
respectively and e is the distance between the extra
layers and original surface.
However, the singularity ofMTM often frustrate the

numerical stability of the solution of Eq.6, fortunately
(
MTM + κD

)
a = MTb (7)

is developed to improve the singularity of matrix
MTM by modifying the diagonal elements. Here, κ
is a positive number which is called RR parameter and
D is a diagonal matrix. Also, to overcome the over
fitting problem, we adopt an adaptive fitting approach
proposed in [5] that adaptively determines the degree
of an IP according to the shape complexity.

3.2 Shape Interpolation by IP Coefficients

As shown in Fig. 2, 2 types of IPs are chosen to fit
the contour of each stone and the contour of desired
region respectively. Then the interpolation is carried
out between the IP fits of stone and desired region.
That is, the interpolation can be viewed as the linear
combination between two coefficient vectors of the IPs.
Suppose the interpolated coefficient vector of IP is de-
noted by alerp, stone contour astone and desired region
avoronoi, then

alerp = αavoronoi + (1− α)astone (8)

4 Distribution by Laguerre Voronoi Dia-
gram

An Voronoi diagram which used Laguerre distance
is called Laguerre Voronoi diagram. Laguerre distance
can be defined as:

l(P, Pi) = (x− xi)
2 + (y − yi)

2 − r2i (9)
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Figure 3. Input Image

Figure 4. Area fitting on Voronoi diagram
(a)Voronoi diagram(b)Multiplicatively weighted
Voronoi diagram(c)Laguerre Voronoi diagram

where Pi(xi; yi) is called generatrix with a non-
negative real number ri. For an arbitrary point
P (x; y), its Laguerre distance to Pi is calculated by
l(P, Pi). This distance can be viewed as the length of
the tangent drawn in a circle of the radius ri, and used
as an index which compares the distance from a circle.

In the coordinate system Pi(1; 0), Pj(−1; 0), bound-
ary of the Laguerre Voronoi region is x = (r2j − r2i )/4.
Therefore, a straight line perpendicular to the line seg-
ment which connects Pi and Pj serves as a boundary,
and area of the region is directly proportional to r.
Since each region serves as a convex polygon and a
size can be controlled. It is suitable for generation of
stone floor.

We confirm the advantage of the Laguerre Voronoi
diagram for stone floor based on comparison with other
Voronoi method. We assume the centroid of the stone
as generatrix of Voronoi diagram. g of multiplicatively
weighted Voronoi diagram and r2 of Lagguerre Voronoi
diagram are defined g = r2 = So/π, So is the area
of the original stone. Area of the generated stone is
SG, common area with original stone SO and SG is
SO∩G. If SG is larger than SO, SG can be adjusted
by the erosion until SG ≤ SO. Here we introduce 2
evaluation factors: A, Capability of SO = SG and B
the mean value of (SO∩G/SO). The former one checks
the controllability of the area, and the latter one checks
the controllability of the shape. As an example, the
input of the stone floor is shown in Fig. 3. Desired
region is arbitrary shape. We try to use Voronoi region
from picture of a stone floor as desired region.

In Fig. 4, (a) shows the reconstruction result using
Voronoi diagram, (b) shows the Voronoi diagram using
Multiplicatively weights, and (c) shows the diagram
using Laguerre Voronoi. The value of the evaluation
factor A and B is shown in Table 2. As result, Voronoi
diagram shows bad performance in the 3 methods,
and multiplicatively weighted Voronoi diagram and La-
guerre Voronoi diagram get almost same performance.
However the reconstruction result of Multiplicatively
weighted Voronoi diagram has some unnatural shape
especially on big stone (see Fig. 4).

Table 2. Evaluation of Voronoi diagram

Voronoi types
SO = SG

ratio
(SO∩G/SO)

mean

Voronoi diagram 92% 83.8%
Multiplicatively weighted

Voronoi diagram 100% 86.5%
Laguerre Voronoi diagram 100% 86.4%

Figure 5. Flow chart

5 Experiment

5.1 Process flow

In this section, we confirm the effectiveness of our
method. Fig.?? shows the flowchart of this experiment.
From Start, two data streams are derived. Left process
is to calculate IP from shape data of stone floor. The
segmentation process calculates contours of stones by
extracting stones from stone floor data. Right process
is for IP calculation from ideal distribution of stones.
Laguerre Voronoi diagram determine desired region of
each stone for interpolation. IP of each stones is calcu-
lated by IP fitting process from contours of each stone
region. The pieces of segmented stone is placed to the
region of the Voronoi diagram. Blending process inter-
polate regions by IP.
Adjusting the pattern of the distribution based on

excavation information, we can edit the stone floor eas-
ily because we can set Voronoi-diagram arbitrarily and
independently.

5.2 Result

Fig.5 (L) and (R) shows regions of a stone floor,
and the desired regions respectively. The desired re-
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Figure 6. (Left)Shape data of Stone floor,
(Right)Distribution of Stones

Figure 7. α=0.0, κ=L)0.001,R)0.01

Figure 8. α=0.5, κ=L)0.001,R)0.01

Figure 9. α=0.8, κ=L)0.001,R)0.01

gions are distribution of stones generated by Laguerre
Voronoi Diagram.

We calculated the IP contour of each stone and that
of each desired regions by IP Fitting. Using IP, each
contours are expressed by f(x) = 0. We calculated the
smooth transformation among two regions by linear in-
terpolation of coefficients which is same degrees of IP.
We applied the 3L method and ridge regression analy-
sis for Adaptive IP Fitting. We set scale adjustment as
0.9 times as the initial shape of the stones because the
size of stone regions are smaller than Voronoi regions.

Fig.6-8 show the transformation results. In Fig.6-8,
we set parameter α as 0.0, 0.5 and 0.8 respectively. In
left side images, we set the parameter κ as 0.001. In
right side images, we set κ as 0.01. Setting κ as 0.001,

some stone shapes could not reconstitute by linear in-
terpolation. When κ is equal to 0.01, all stones recon-
stitute its shapes well, and gaps among each stones are
adjustable. This result shows the effectiveness of our
method to transform the stone floor well.

5.3 Discussion

When we set κ = 0.001, α = 0.5 or α = 0.8, the
interpolation error occurred. In addition, using IP, re-
constructed contours of stones were slightly rounded off
in every situation. It is because a property of the IP
is difficult to express the shape which is not smooth.
Therefore, it is effective to set larger κ for stable IP
Fitting. However, there is a trade-off between shape
precision and stability. The failure judgment can be
calculated by the ratio of each convex area. It is effec-
tive to minimize κ using this failure judgment.

6 Summary

We proposed a method for smooth interpolation of
stone floor by IP and Laguerre Voronoi Diagram. In
experiments, we confirmed that the gap is arbitrarily
adjustable. In future work, we develop the editing tool
to handle nor only contours but also detail shapes such
as textures.
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