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Abstract

Lung cancer is mainly diagnosed by the identification
of malignant nodules in the lung parenchyma. For that
purpose, the identification of all the possible structures
that could be suspicious of lung nodules became a cru-
cial task in any lung cancer computer aided diagnosis
(CAD) system.
In this paper, a new approach for lung nodule can-

didate identification is proposed. This method uses a
3D medialness Hessian-based filtering to identify round
shape structures that could be identified as nodules.
This technique, that demonstrated its accuracy in lung
vesselness extraction, provides clearer candidates than
other approaches, providing less response in the pres-
ence of noise artifacts and returns a better continuity
in vessels, mostly responsible for false positives. That
way, they will be better distinguishable from the nodules
in posterior analysis.
This approach was validated in 120 scans from the

LIDC/IDRI image database. They include 212 nod-
ules with diameters in the range 3 mm to 30 mm.
The results demonstrate that our approach is capable
of identifying most of the nodules and include less false
positives than other approaches, facilitating a posterior
task for false positive removal.

1 Introduction and previous work

Nowadays, from all the cancers, lung cancer is the
most dangerous and main cause of death. As reference,
the American Cancer Society estimated, for 2014, that
lung cancer represents approximately 27% of all cancer
deaths [1]. That makes the early detection and diagno-
sis a crucial task to maximize the chances of survival.
There are different approaches that face this prob-

lem. All the methods try to identify malignant lung
nodules, as in chest radiography [2]. However, from all
of them, the analysis in chest Computed Tomography
(CT) is one of the most employed, providing better
information for the detection of malignant nodules.
Lung cancer diagnosis methodologies can be gener-

ally organized in 5 different steps: lung parenchyma
extraction, nodule candidates identification, nodule de-
tection, benign/malignant differentiation and, there-
fore, the final lung cancer diagnosis. Lung parenchyma
extraction involves the segmentation of lung region. In
our case, we used region growing to obtain the ROI,
remove the traquea and refine the contour to include
all possible juxtapleural nodules, as Novo et al. [3]
proposed.
The next step is the lung nodule detection. Many of

the proposed CAD systems have two phases: first, the
identification of all structures that could be nodules;
second, the false positive (FP) reduction. Generally,
nodules present a round shape with a blob-like struc-
ture but presenting a large variability in terms of size,

shape or irregular contours and the possibility of nod-
ules attached to vessels or lungs walls. All of this im-
ply that nodule candidate detectors have to be flexible
enough to include all existing nodules, but restrictive
enough to avoid as much FP structures as possible.
This is where this paper is placed, in particular, in the
nodule candidate detector.
Over the years, a large amount of techniques to face

this problem were published. Some authors performed
different image transformations in order to enhance
the nodules from other structures and separate them
by thresholding [4]. Others, employed several different
gray-level techniques in order to obtain the final can-
didates [5, 6]. Other approaches used cylindrical and
spherical filters to recover the structures with potential
of being nodules [7, 8], idea that was also used in [9],
identifying circular and semicircular (juxtapleural and
attached nodules) by template matching.
Our focus is one of the most relevant and referenced

works, proposed by Murphy et al. [10]. This method
calculated the Curvedness (CV) and Shape Index (SI),
two local image features, that are thresholded to define
the nodule candidates.
In this paper, we use the structural information of

the Hessian matrix to identify the nodule candidates.
However, we used the principle of central adaptive me-
dialness (instead of CV and SI) that was proposed by
[11] for the detection of tubular structures in 3D imag-
ing. This method was recently applied to lung vessel
extraction demonstrating its accurate response as it
was the winner of the VESSEL12 challenge [12], ves-
sel segmentation in lung CT scans. This approach of-
fers better coherence in vessel detection and connectiv-
ity and is more robust with respect to noise, desirable
properties for lung nodule detection.

2 Methodology

Our approach uses an image enhancement filter that
employs the eigenvalues derived from the 3D Hessian
matrix at each voxel to identify those regions in the
image with round structures. Given the large nodule
size variability we use a multi-scale method, based on
the Gaussian second order derivative of an image I
with scale σ at a voxel x, given by:

∂2Iσ
∂x2

= I(x) ∗ ∂2G(σ, x)

∂x2
(1)

Based on (1) we compute the 3×3 Hessian matrix, at
the voxel x = (x1, x2, x3) for a given σ and derives the
eigenvalues |λ1| ≤ |λ2| ≤ |λ3|. Using the λ’s, different
enhancement methods can be applied with the idea of
filtering those structures to be considered as nodule
candidates. Thus, for a given σ, we calculate Vσ(x) as
the response of a given enhancement method in a voxel
x.

The final response is calculated as the maximum re-
sponse at each voxel x over the range of σ’s:
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V (x) = max
σ1≤σj≤σn

Vσj
(x) (2)

Below, we describe the enhancement approaches
(Vσ(x)) included in this paper, that is, using SI and
CV, as defined in [10], and our proposed approach that
uses the central adaptive medialness as in [11].

2.1 Shape Index and Curvedness approach
In [10], the authors down-sample the image and ap-

ply a Gaussian filter (σ = 1) to reduce the noise in-
fluence. After obtaining the principal curvatures with
σ = 1, the authors derive the SI and CV as:

SI = 2
πarctan

(
λ1+λ2

λ1−λ2

)
CV =

√
λ2
1 + λ2

2 (3)

Finally, hysteresis thresholding is used to find the
candidates. This method also defined a more relaxed
level for juxtapleural nodules, in order to preserve
them.
In our implementation, we calculate the eigenvalues

over a range of σ’s (instead a fixed one as used in [10]).

2.2 Central adaptive medialness approach
We use the central adaptive medialness principle [11]

that was firstly defined to detect 3D tubular structures
and recently applied for lung vessel extraction.
This method uses λ1, λ2 and λ3 as follows:

V (σ, x) =

{
0 λ1 + λ2 + λ3 ≥ 0
−λ2

λ3
· (λ2 + λ3) otherwise

(4)

Basically, this method is only applied where the sum
of the eigenvalues is less than 0, that is, for bright ob-
jects. In this case, we use the two largest eigenvalues
to measure the structure strength, and their ratio is
applied to correct deviation from the center of the de-
tected structure.
As main advantages, this approach offers higher ro-

bustness as it does not require any Gaussian smooth-
ing, being more sensitive to small nodules.
Most of the FPs are due to all the bronchi and vessels

in the image. This method offers a better continuity
in vasculature implying less identification of FPs and
also facilitating a posteriori analysis distinguishing the
bronchi and vessels (tubular-like structures) from nod-
ules (blob-like structures).

2.3 Final lung nodule candidates refinement
Once the thresholded candidate image is obtained,

the final nodule is obtained by grouping the bright pix-
els in clusters by connectivity. Then, it clears the im-
age with tiny candidates (mainly derived from noisy
artifacts). The remaining candidates are grouped in 3
different types, according to their size:
Small candidates: candidates with small number

of pixels are grown, for making possible a more reliable
characterization.
Intermediate candidates: candidates that are di-

rectly taken to the final results.
Large Candidates: we assume that these candi-

dates are juxtavascular nodules (nodules attached to
vessels). In this case, we apply a progressive erode un-
til complete vessel removal. In each eroding step, we
take all the small broken parts as new candidates. In

(a) (b) (c)
Figure 1. Examples of final candidate refinement.
1st row, growing of a small nodule candidate. 2nd

and 3rd rows, separation of juxtavascular nod-
ules. (a) Original image. (b) Candidates before
refinement. (c) Final candidates detection.

(a) (b) (c)

Figure 2. Example of nodule candidate detection.
(a) Original image. (b) Candidates after initial
detection. (c) Final detected candidates.

particular, we dilate with the same structure element
in the erosion and mask the result with the original
candidates image. Figure 1 shows examples of small
and juxtavascular nodule detection.
As in the dilation process new small structures could

be added, we apply an additional cleaning step, but,
as they are the final candidates, with higher thresh-
olds. Figure 2 shows an example of candidate detec-
tion including initial detection after applying the cen-
tral adaptive medialness criterion and the result after
the final refinement of the candidates.

2.4 Candidate features and classifiers
To reduce the number of FPs we characterize the

nodule candidates with a set of features that are used
in a classification step. A small set of basic features
and a set of basic classifiers were employed to evalu-
ate the generated candidates. Regarding the features,
some of them are inspired in the first set proposed by
Murphy et al [10]. The measurements are calculated
in millimeters. These features are:

• Cluster size, number of voxels.

• Compactness1 = ClusterSize
(dimx)·(dimy)·(dimz)

.

• Compactness2 = ClusterSize
(max dim3) .

• Ratio1 = max dim
min dim . Ratio2, max dim

med dim .

• RatioEi1 = λ2

λ3
RatioEi2 = λ1

λ3
RatioEi3 = λ1

λ2

• RatioEi4 = ratioEi1 · ratioEi2 · ratioEi3.
Given a sphere S, a sphere at the candidate location

with radius the mean of the dimensions:
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Table 1. Threshold for SI and CV.
Initial seed thresholds Hysteresis thresholds

Shape Index Curvedness Shape Index Curvedness

0.5 0.01 0.45 0.08

Pleural 0.4 0.005 0.35 0.003

• Sphericity1, num cluster voxels in sphere S
num voxels sphere S .

• Sphericity2, num cluster voxels in sphere S
num voxels nodule .

• intensity max, intensity min, inten-
sity mean, intensity median and inten-
sity std are the maximum, minimum, mean,
median and standard deviation of the cluster.

Sequential Forward Feature Selection (SFFS), with
inter-intra criterion as the evaluation measure was
used. It was selected as it is fast to compute, which
is ideal for a large amount of data. For classifica-
tion, different classifiers were used, the Linear Discrim-
inant classifier, the Quadratic Discriminant classifier
and Parzen classifier. The system was evaluated using
sensitivity.

3 Results

3.1 Lung image database
We tested the methodology on 120 different chest

CT scans from the LIDC-IDRI image database [13],
with a variable number of 512×512 slices, between 102
and 310, with image intensities in the range [0 − 1].
These scans contain 212 nodules identified by up to
4 radiologists. Each radiologist manually segmented
each identified nodule. This 3D segmentation is used
as groundtruth to identify candidates that belong to
nodules. The scans were taken from a heterogeneous
range of scanner models and technical acquisition pa-
rameters.
Only solid and part-solid nodules were considered.

No other restriction was introduced to include the
lung nodules, as defined by the LIDC-IDRI database,
in terms of: subtlety, internal structure, calcification,
sphericity, margin, lobulation, spiculation, texture and
malignancy. A large variability of nodules in terms of
size and characteristics is represented. Finally, for ef-
ficiency, the images were down-sampled to 256× 256.

3.2 Parameter tuning
Given the large nodule variability and image condi-

tions, the parameters used were set flexible enough to
be able to detect most of them.
For SI and CV computation, we used a range of σ’s

between 0.5 and 3.5, increasing 0.5 steps. As explained
before, the resultant eigenvalues of each combination
were taken to calculate the SI and CV parameters. The
final parameters at each voxel were taken as the maxi-
mum value among scales. Finally, Table 1 shows the SI
and CV thresholds used to obtain the candidate image.
Our approach was directly applied, without any pre-

processing. To the result image, it is applied a thresh-
old of 0.08 to obtain the candidates and a lower thresh-
old of 0.001 for small candidates.
In the candidate refinement phase, only nodules with

sizes between 10 and 500 voxels. Moreover, the ini-
tial and final candidates cleaning establish as minimum
sizes 2 and 5 voxels for juxtapleural candidates, and 5

(a) (b) (c) (d)

Figure 3. Examples of detected nodules. (a)(c)
Input images. (b)(d) Nodule candidates.

Table 2. Results after lung candidates detection.
Methodology Sensitivity FP per

after processing scan

Murphy et al. 96.22% 881

Proposed 98.11% 397

and 10 voxels for candidates for the rest of the candi-
dates.

3.3 Analysis of the results

Firstly, a nodule is considered successfully detected
if there is any candidate that overlaps with the ground
truth provided by the specialists. As shown in Table 2,
the candidate detection with both methodologies has
a good sensitivity, even better with the proposed ap-
proach. The few missed positive cases are extremely
complicated ones. They belong to small juxtavascular
nodules that are placed in the continuity of a vessel.
They were initially detected but removed in the erod-
ing process.
Figure 3 shows examples representing the large nod-

ule variability. In particular, the first row presents two
different nodules in terms of size, a big nodule and
a small nodule. The second row presents two compli-
cated detections in terms of shape and position, a small
juxtapleural nodule and a complex part solid nodule.
Table 2 shows the results for the candidate identifica-

tion. The central adaptive medialness approach, as ex-
plained before, offers a good response in the nodules as
well as it includes significantly less FPs. Moreover, as
the proposed approach offers a better continuity in the
vessels, responsible for many of the FPs, the method
generates less juxtavascular FPs.
Additionally, we tested the potential of the method

in reducing the number of FPs by introducing an ad-
ditional classification step using the set of nodule fea-
tures mentioned before. For that purpose we varied
the number of features between 5 and 10. SFFS se-
lected mainly shape and morphology features, as most
of the FPs have a non-blob structure. Intensity based
features are always selected after the 5th place. That
happens due to the large variability in image condi-
tions arising from different machines, configurations,
etc. Moreover, we include a large variability of nodules.
As result, the global intensity measures are not homo-
geneous, penalizing their discrimination relevance.
Table 3 shows the performance results evaluated us-

ing sensitivity and FP removal for both approaches.
The proposed approach generates a low number of FP
candidates. Overall, it reduces significantly the num-
ber of FPs, concluding with a considerably lower set
comparing with the approach without the classifica-
tion step. The results were obtained with the classifier
that offered the best results. In this case, they were
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Figure 4. Examples of missed nodules after classi-
fication due to part of vessels attached. Original
image, candidate in the given slice and continuity
of the nodule candidate along adjacent vessel in
consecutive slice, respectively.

obtained by the LDC.
Regarding the sensitivity reduction, almost all of

the missed nodule candidates are juxtavascular nod-
ules. In this case, the refinement process sometimes
includes small parts of vessels that remain attached
to the candidate. That way, these candidates have a
not so similar blob shape, as seen in Figure 4. As the
classification step uses mainly shape and morpholog-
ical features, these candidates can be easily mistaken
as FP candidates, as they do not resemble blob like
structures.
In terms of efficiency, both methods uses the same

structure, produces the initial candidates derived from
the enhancement filtering using the eigenvalues and
then, apply a sequence of operations to refine the final
nodule candidates. For that reason, the computational
cost of the methods depends directly on the number
of this initial set of identified FPs. As the proposed
method produces significantly less initial FPs, the rest
of the method is significantly faster with respect to the
Murphy’s approach. Using a specific patient, the can-
didate identification (before classification) using the
Murphy’s method, and a final set of 341 candidates
took close to 6 minutes to be obtained. The same pro-
cess with the proposed method took 3.5 minutes with
a final set of 121 candidates.

4 Conclusions
In this paper, a new methodology for chest CT lung

nodule candidate selection is proposed. The method
uses the principle of central adaptive medialness [11]
for the identification of all the structures that could
be lung nodules. This approach offers a better re-
sponse to noise and vessels than other Hessian based
approaches in reducing the FP rate per scan. The
method was tested on 120 scans including 212 nodules
with solid/part-solid texture, detecting most of them.
We also tested the candidates with a small set of fea-

tures and basic classifiers. As the experiments show,
this new approach can reduce the FPs significantly.
The method provides an accurate detection in the
largely variable set of nodules. All the initial non
detected nodules and most of the miss-classifications
come from juxtavascular nodules that, in the refine-
ment process, are removed or they still have attached
vessel parts. In future work, we plan to perform a more
accurate extraction of juxtavascular nodules. More-
over, a more advanced feature extraction and classifi-
cation process will be developed in order to improve

Table 3. Results after FP reduction.
Methodology Sensitivity Final FP/scan
Murphy et al. 89.71% 221
Proposed 88.65% 107

the performance of the method.
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