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Abstract

The success of dental implant surgery is subject to
accurate advanced planning. In order to properly plan
for suitable implant placement, it is necessary for accu-
rate segmentation of the inferior alveolar canal. This
paper presents a new approach of a semi-automatic
method based on a new and effective active contour
model viz. an adaptive diffusion flow active contour
model. Cone-beam computed tomography (CBCT) im-
ages is used as a dataset to extract different views of
an inferior alveolar canal. The method has been tested
in a ground truth set and evaluated using three similar
indicators (the Jaccard index, Dice’s coefficient, and
Overlap coefficient), achieving promising results in all
of them (0.908±0.016, 0.947±0.008, and 0.954±0.008,
respectively). Moreover, the presented results show that
our method obtains higher accuracy values when com-
pared with GVF snake. The method has proven to be
significantly accurate and is possibly integrable in cur-
rent dental implant surgery planning systems.

1 Introduction

A 3-dimensional (3D) dataset acquired from cone-
beam computed tomography (CBCT) has become one
of the most important dental radiographies for diag-
nosis of dental and maxillofacial applications [10]. For
example, it is applied to dental implant planning: a
surgical component which provides an artificial root
by means of interfacing with the bone of the jaw
(mandible) to support dental prosthesis.
In order to make accurate implant site assessment,

the effective visualization system of dental radiography
is strongly demanded by dentists. Especially, it could
help to reduce the risk of injury to the inferior alveolar
nerve (IAN), that affects a sensation system and may
cause infection as well as failure to osseointegrate [3].
Due to the position of the IAN traveling within the in-
ferior alveolar canal (IAC) in the mandible, the IAC is
more detectable than the IAN itself. Therefore, robust
segmentation of the inferior alveolar canal (IAC) is one
of the key features to be improved in dental radiogra-
phy applications.
The aim of this paper is to detect and reconstruct

the main feature of IAC using a new and effective ac-

tive contour model viz. an adaptive diffusion flow ac-
tive contour model (ADF snake) applied to the CBCT
dataset. This paper demonstrates how the algorithm
can generate an extremely suitable vector field for a
deformable process of the active contour model, to get
a well segmented feature of the IAC on each slide of
the dataset. Especially, when the IAC passes across
the spongious region. Besides segmentation, the ADF
snake is applied as a tracking method to get full struc-
ture of the IAC in the 3D dataset.

2 Related Work

Many dental applications have carried out the pro-
cess of 3D reconstruction from a CT or CBCT dataset
by de-emphasizing IAC segmentation as in [6] and [9];
they detected IAC based on panoramic CT images by
reforming the stack of original CT images. The seg-
mented results and its visualization of the IAC using
the panoramic method may not be very much satisfac-
tory. Another approach [2] presented an IAC based on
a geodesic active contour model, the level set method.
The main disadvantages of the model is that it has to
follow three conditions: the tabular structure consists
of only one connected component, not close to other
component, and no self-intersections the structure. Be-
side these conditions, the model may not perform well
under the real situation based on the deformable func-
tion. A state of the art algorithm, the GVF snake was
also implemented in [13] for quantitative image recon-
struction applied to mandibular distraction. This pa-
per mostly demonstrated the optimization of the key
parameters of the GVF snake as well. Beside the above
cited methods, there are various other methods imple-
mented for IAC detection including [1], [5], and [7].

3 Theoretical Background

An active contour model [4] has been expansively
implemented in image processing and computer vision
owing to its proficient performance. Also, there have
been many studies that try to overcome its disadvan-
tages including the method applied in this study, a new
and effective ADF active contour model (ADF snake).
This section aims at simplifying the explanation of an
ADF snake as explained below:

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-7

57



An Adaptive Diffusion Active Contour Model

An ADF snake is a new and effective external
force [14] developed to solve problems in previous
snakes including low capture range, weak edge leaking,
as well as deep and narrow concavity regions. This
framework is established as an equivalent framework
between the GVF snake diffusion process [16] and the
image restoration process. The improved features can
be described as follows;
For simplicity of theoretical explanation, the GVF

energy is rewritten as

E(u, v) =

∫∫
μ · Φ(|∇v|)dxdy +

∫∫
|v −∇f |2dxdy. (1)

1. Weak edge leaking: by considering the GVF
snake, in the smoothness energy, the vector field is
smoothed in the direction of gradient as same as in
the edge direction which is undesired. In order to
preserve a weak edge, there should be no diffusion
parallel to the gradient. Hence, in ADF a hyper-
surface minimal function: Φ(∇V ) =

√
1 + |∇v|2 is

substituted in the smoothness energy term in the
GVF snake. The function is preferable to diffuse
along the tangent direction of an edge so that the
weak edge is preserved efficiently. When consider
v as a surface defined on image domain, the cor-
responding diffusion term in GVF is given by

E(u, v) =

∫∫ √
1 + |Gσ ⊗∇v|2dxdy (2)

where Gσ is the Gaussian kernel of standard devi-
ation σ which could smooth the vector field, ∇v
presents the gradient of v, and ⊗ denotes the con-
volution operator.

2. Adaptive diffusion force filed: using harmonic
maps: p(|∇f |) = 1 + 1/(1 + |∇Gσ ⊗ f(x)|) which
ranges from 1 to 2. Consequently, the diffusion
process of the force field can be adjusted adap-
tively according to image characteristics so it can
preserve weak edges and smooth force filed. Thus,
the harmonic hypersurface function is defined as

E(u, v) =

∫∫
1

p(|∇f |) (
√

1 + |Gσ ⊗∇v|2)p(|∇f |)dΩ.

(3)

where Ω is a bounded open subset of �2, ∂Ω de-
notes its boundary and f presents an edge map.

3. Converge to narrow and deep concavity: devel-
oped Infinity Laplacian function to encourage the
diffusion along the normal direction in the image
smoothing region so as to make vectors downward
into the boundary concavity instead of converg-
ing from two opposite directions. The function is
given by

E(p → ∞)(u, v) =
1

p

∫
Ω

|∇v|L∞(Ω)dΩ. (4)

(a) (b)

Figure 1. An example of IAC enhancement image.
(a) Original image.; (b) Enhanced image.

Finally, a unified diffusion framework, called adap-
tive diffusion flow (ADF) is given by

Ep(u, v) =∫∫
g · (−m ·ΘL∞(Ω) + (1−m) · 1

p(|∇f |) · (√1 + Ω)p(|∇f |))dxdy

+

∫∫
h · (|v −∇f |2)dxdy (5)

where Θ = |Gσ ⊗ ∇v|2, g and h are weighting func-

tions (same as GGVF [15]); g(∇f) = e−(
|∇f|
K ) (K is

the weighting parameter determining to some extent
degree of tradeoff between field smoothness and gradi-
ent conformity), h(|∇f |) = 1− g(|∇f |), and m is also
the weighting function which is given by

m =

{
[1− f2/5K2]2 if f2/5 ≤ K2

0 othervise.

here, K = 1.4826 · E(||∇f | − E(|∇f |)|) and E(·)
presents the mean value.

4 Inferior Alveolar Canal Segmentation

Segmentation of an IAC is still challenging due to
an imperfect of the dataset (CBCT) including noise,
low contrast, and broken boundaries. Especially, when
considering all drawbacks of previous methods and the
effective performance of the ADF snake as mentioned
earlier, the ADF snake stands out to be one of the
proficient methods for IAC segmentation.

4.1 Materials

The CBCT data were provided by the Dental cone-
beam CT Scanner (DentiiScan) [11] and [12]. CBCT
volumes are comprised of slices of size 400×400 pixels,
with resolutions of Δx = Δy = Δz = 0.4mm. The
number of slices is 323 in each patient.

4.2 Image Enhancement

Based on the imperfect of the dataset, that are noisy,
low in contrast, and with broken boundaries, image en-
hancement is needed before the segmentation process.
The morphological operations (top-hat and bottom-
hat) were applied to the dataset for edge enhancement
and noise suppression as shown in Figure 1. By let-
ing f : E �→ �2 be a grayscale image, and b(x) be a
grayscale structuring element, the enhanced image is

fenhance = f + (f − f ◦ b)− (f • b− f).
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(a) (b)

(c) (d)

Figure 2. The comparison of IAC segmentation
between the GVF snake and the ADF snake fo-
cusing on weak edge leaking convergence. (a)
GVF force field; (b) ADF force field; (c) GVF
snake segmentation result; (d) ADF snake seg-
mentation result; Both models use the same pa-
rameters for deformation, α = 0.1, β = 1,
iteration = 60.

4.3 Segmentation and Tracking Process

The significant property of the ADF snake for IAC
segmentation is that it can create a suitable vector field
for snake deformation based on the image characteris-
tics; for example weak edge, disconnected, and strong
adjacent boundaries. The comparison of vector fields
and segmented boundaries between well-known algo-
rithms, the GVF snake and the ADF snake are shown
in Figure 4.3. It can be noted the ADF snake performs
very much better than the GVF snake. By consider-
ing the force field, ADF force field’s direction is more
parallel to the IAC boundaries than the force field of
GVF because the ADF force field is calculated in both
normal and tangent directions whereas the GVF force
field is computed in only normal direction.
An ADF snake was used for an IAC segmentation,

slice by slice, and then reconstruct it for 3D visualiza-
tion. Besides segmentation, the active contour model
has significant performance for object tracking. There-
fore, the ADF snake is applied as a tracking method
by user intervention in the first and last slices for con-
tour initialization and at the end of tracking process
respectively. In between both slices, the ADF snake is
applied to the current segmented results to be an initial
contour of the next slice. The procedure for the IAC
segmentation and tracking is described in the flowchart
as shown in Figure 3.

4.4 3D Reconstruction

The segmented CBCT results are visualized in 3D
volume rendering by CBCT image viewer: DentiView
version 3.0 (NECTEC, Thailand) [8]. An example of
3D reconstruction of a patient’s IACs in the right and
left sides are shown in Figure 5.

Figure 3. A flowchart for segmentation and track-
ing of the ADF snake to find IACs in a 3D
dataset.

(a) (b) (c)

Figure 4. An example IAC segmentation by ADF
snake and its ground truth. (a) An original IAC
image; (b) The bright contour depicts a result of
an IAC segmentation by ADF snake ; (c) The
apparent contour expresses a ground truth of an
IAC.

4.5 Data Analysis

In order to evaluate the accuracy of the segmentation
process, 6 CBCT data were considered. The ground
truth was manually segmented (randomly) in 6 hemi-
mandibles which consisted of 240-303 cross-sections.
An example of the segmented result and its ground
truth are shown in Figure 4.
There are 3 different indicators of similarity used

for comparing the cross-sections segmented by the pro-
posed method with the ground truth;

• Jaccard index (JI)

JI(Iseg , Igt) =
|Iseg ∩ Igt|
|Iseg ∪ Igt|

, where 0 ≤ JI ≤ 1

• Dice’s coefficient (DC)

DC(Iseg , Igt) =
2|Iseg ∩ Igt|
|Iseg |+ |Igt|

, where 0 ≤ DC ≤ 1

• Overlap coefficient (OC)

OC(Iseg , Igt) =
|Iseg ∩ Igt|

min(|Iseg |, |Igt|)
, where 0 ≤ OC ≤ 1
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(a) (b)

Figure 5. 3D reconstruction of IAC from seg-
mented cross-sections. (a) and (b) are the IACs
at the right and left sides of the patient.

Table 1. Mean values for the analyzed indicators.

ADF snake JI DC OC
Mean(μ) 0.9087 0.9472 0.9542
S.D.(σ) 0.0162 0.0087 0.0086

GVF snake
Mean(μ) 0.7617 0.7998 0.8097
S.D.(σ) 0.0189 0.094 0.0094

5 Results and Discussion

The six datasets were measured with 3 similarity
indicators as shown in Section 4.5, and the mean values
as well as the standard deviation for all cases are shown
in Table 1.
According to the dataset, the segmentation process

is performed in cross-sectional images and the evalu-
ation of the method has focused on studying the 2D
segmentation in the cross-sections. Therefore, the eval-
uation strategy is based on the comparison of processed
images with ground truth sets.
The results of the presented method in the de-

scribed dataset have been promising in all the con-
sidered similarity indicators. Considering the overlap
indicators, the method has achieved high values in the
processed dataset, that is 0.908±0.016, 0.947±0.008,
and 0.954±0.008 (in terms of mean value and standard
deviation) in the JI, DC, and OC indicators, respec-
tively. Moreover, the presented results show that our
method obtains higher accuracy values when compared
with GVF snake.

6 Conclusions and Future Work

This paper has proposed a new segmentation ap-
proach for CBCT images: The ADF snake for IAC
segmentation and reconstruction. The algorithm has
been exhaustively measured for three indicators in-
cluding the Jaccard index, the Dice’s coefficient,and
the Overlap coefficient. All results indicate achiev-
ing of accuracy and thus providing reliable informa-
tion to computer-aided programs in order to facilitate
oral surgery. Future work will focus on full-automatic
segmentation with no interfere of end users. Further
testing of other segmentation methods is also needed
in order to improve accuracy.
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