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Abstract

Reliable surface normal computation is fundamental
for a broad range of computer vision application areas,
e.g. object segmentation, classification and recogni-
tion. Naturally, the surface normal is computed on
the acquired depth data, whereby the normal quality is
dependent on noise performance and resolution of the
underlying image modality. The tendency of combining
different imaging sensors into one device is increasing
and leads to a new sampling density, which can be used
to compensate or reduce the drawbacks of modalities.
This paper presents a novel method for computing
surface normals on RGB-D images by combining su-
perpixel segmentation in color space with plane fitting
in depth space. For evaluation we perform a qualita-
tive comparison between our method and two standard
methods for computing normal maps in diverse indoor
scenes. Our results show an improvement in computing
normal maps with clear and crisp-edges. Furthermore,
our proposed method approximates valid normal infor-
mation in areas where the depth sensor returned errors
or depth inhomogeneities. These results emphasize our
assumption that under normal light conditions edges in
depth space are coherent to edges in color space.

1 Introduction

Real time computing algorithms are important for
a plethora of computer vision applications. The lim-
itation in memory and computational power creates
the need for efficient representations. State of the
art algorithms in mobile robotics usually collect the
perceived information of the environment in a 3-D
point cloud. This representation is motivated by the
presentability of the real world, as well as 3-D Laser
Range Finder returning 3-D point sets. Generally,
the noise characteristic is strongly varying between
technologies such as 3-D Laser Range Finders, stereo
cameras, Time-of-Flight and structured light sensors.
Furthermore, combining different imaging sensors (e.g.
color and depth) into one device results in more per-
ceived information with the result that this data rich-
ness can be exploited for a better surface normal com-
putation. However, depth sensors like Time-of-Flight
or IR structured light sensors do not necessarily need
to be converted into a point cloud structure, especially
in applications where feature methods in the image
space are used. Projecting of feature points back and

forth between the cartesian image space and a point
cloud can be computationally expensive. Computing
normals in image space receives very little attention
in literature, although noise performance of state of
the art depth sensors would require comprehensive
discussion.
The paper at hand is structured as follows: In

section II we give an overview of related work in the
field of surface normal computation. In section III
we then introduce our method for enhanced surface
normal computation. In section IV we describe our
experiments and results to evaluate our approach. In
section V we provide a final conclusions on our work
and directions for future work.

2 Related Work

In recent years superpixel methods became increas-
ingly popular in computer vision applications. Gener-
ally, superpixel methods can be broadly divided into
graph-based and gradient ascent methods. Achanta
et al. [1] empirically compared five state of the art
superpixel algorithms. As a result the simple linear
iterative clustering (SLIC) method outperformed the
other superpixel algorithms in boundary adherence,
segmentation speed, and performance. The segmen-
tation speed of this method can be speeded up by a
factor of 10x∼20x with a GPU implementation [2].
The surface normal estimation in point clouds has

been increasingly investigated, while the normal esti-
mation in the perceived depth image space has drawn
little attention. Generally, the perceived data from
stereo-, Time-of-Flight- or structured light cameras is
projected into a point cloud.
Klasing et al. [3] analyzed and compared different

methods for normal vector estimation in 3-D point
clouds regarding the usability for online processing on
mobile robots, with the conclusion that the presented
PlanePCA is the universal method of choice.
Dey et al. [4] approximates the surface normals in

point cloud data by the centers of a set of unique large
Delaunay balls, named polar balls.
Badino et al. [5] proposes an approach for obtaining

normals by calculating the derivatives of the surface
from a spherical range image, in order to compute fast
and accurate normals of a huge point cloud set.
Rasu describes in his PhD thesis [6] how surface

normals can be estimated in a point cloud by searching
for the k nearest neighbors in a kd-tree.
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(a) (b) (c) (d)

Figure 1: (a) color image of a scene showing an upper corner of a room, (b) color image with mapped superpixel
grid (c) depth image with mapped superpixel grid of the color image, (d) computed normal map of our proposed
method.

Holzer et al. [7] proposes a method to estimate sur-
face normals in integral images in real time under the
usage of the covariance estimation.
Principal Component Analysis (PCA) is a statistical

procedure to identify the principal directions in which
the underlying data varies. These principal directions
can be found by calculating the eigenvectors and eigen-
values of the data covariance matrix. This analysis is
a standard procedure in computer vision applications.
Neuhaus et al. [8] uses the principle component analysis
to estimate the local flatness of outdoor 3-D point
clouds, in order to distinguish between drivable and
non-drivable areas in laser range data. Therefore, the
ratio between the three eigenvalues of the hierarchi-
cally subdivided point cloud is analyzed.
Diebel et al. [9] successfully combines a high res-

olution color image with a lower resolution Time-
of-Flight-sensor to increase the low resolution of the
depth. Therefore, Markov Random Fields are used to
exploit the tendency that discontinuities in range and
coloring co-align.

3 Enhanced Surface Normal Computation

In this section we describe our simple but effective
method for surface normal computation on RGB-D
images. The presented method requires registered
color and depth information of a scene. Further, the
depth information needs to be encoded in a metric 3-D
distance space. Depth inhomogeneities or errors, which
can appear through the nature of a Time-of-Flight or
a structured light depth sensor (e.g. Microsoft Kinect
V1), can be handled by our method and do not need
any preprocessing. Once the color and depth data is
fused we compute the normal map in three major steps:
1) Superpixelation of the RGB data. With this method
we cluster our scene into equally sized superpixel tiles.
The superpixel segmentation method preserves sharp
boundaries in the color image. 2) Normal computation.
We use the superpixel grid for clustering the depth
information in compact tiles, because we assume that
under normal illumination conditions an edge in 3-
D space generates a visible boundary in color space
(cf. Diebel et al. [9]). This methodology enables us
to compute normals in depth image space, leading to
the advantage that we do not need to organize the
depth points in a special point cloud structure, such
as kd-tree. Within each superpixel tile we randomly
select depth points to compute the locally approxi-
mated normal information by fitting a plane model.
Therefore, we use covariance matrix for computing

the eigenvalues and RANSAC to neglect outliers. 3)
Finally, we generate the normal map by assigning the
estimated normal to all pixels of the superpixel. Figure
1 (a-d) shows an example to illustrate the main steps
of our method.

3.1 Superpixelation

To superpixelate the color image, we use the SLIC
method proposed by [10]. The main advantage of this
superpixel segmentation is that its results in equally
sized compact superpixel tiles. The parameters: size
of the superpixel and the regularization factor define
the nature of our normal maps. Small superpixels are
fast to compute and lead to more details, although
local noise will remain within the normal map. On the
other hand, bigger superpixels are perfect for reducing
the noise within its closed range on planes, e.g. a wall.

3.2 Normal Computation

For estimating the normal we compute the eigenval-
ues of the covariance matrix of the 3-D points within
each superpixel. The lowest eigenvalue corresponds
to the approximated normal of the point set. The
point distribution of the set lies on a plane if the
other two eigenvalues are significantly higher compared
to the lowest eigenvalue. Figure 2 (a) shows the
depth information of a door detail with the overlaid
superpixel grid of the color image. It can be recognized
that the depth information at the superpixel-border
includes the majority of outliers. These outliers change
the normal orientation in areas where depths values
are strongly varying. In Figure 2 (b) we illustrate
the effect when the normal is computed based on all
depth points within one superpixel and Figure 2 (c) is
an illustration for computing the normal based on all
depth points of the superpixel but without the border
pixels. In our method we use RANSAC to generate
a number of random k plane candidates. Therewith,
we reduce the computational complexity and ensure
that outliers are neglected. As described above, the
points for the plane model are randomly picked from
depth points within one superpixel without the border
pixels. The plane model with the highest consensus is
selected for computing the normal of the superpixel.
We calculate the required number of candidates for an
expected number of outliers with a desired precision
based on the RANSAC termination criteria k = log(1−
p)/log(1−wn), where p is the precision, w the number
of inliers and n the number of points for estimating
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Figure 2: image detail of Figure 3a (red rectangle), (a)
depth image with mapped superpixel grid of the color
image, note the depth outlier within the superpixel
grid, (b) result of our method by selecting all points
for normal estimation, (c) result by selecting all points
but the border of a superpixel, (d) result by selecting
random points of a superpixel without the border
points.

(a) (b) (c) (d) (e)

Figure 3: Office door: (a) color image, (b) depth image,
(c) result of our proposed method with a superpixel
size of 20 and a regularization factor of 0.3, (d) result
of method [6] with a kd-tree radius search of 10cm, (e)
result of method [7] with the parameters of a normal
smoothing size of 30 and a max depth change factor of
0.2.

the model. Figure 2 (d) shows the improvement of
calculating the normal of each superpixel.

4 Experiments & Results

In this section we present the qualitative results of
our method. Further, we compare our work with the
normal estimation methods proposed by [6] and [7].
The parameters for our method are mainly determined
by the size and regularization factor of the superpixel
algorithm. The threshold and termination criteria of
RANSAC are fixed values in our experiments. As
threshold distance we used 2.5cm. This threshold is
motivated by the average depth resolution along the
z-axis of the used depth sensor. Moreover, we assume
an inliers ratio of w = 0.6 and a precision of p = 0.98,
which lead to termination criteria of k = 16 plane
candidates for each superpixel.
We evaluated our method in three scenarios where

we captured an untidy office, doors and a human.
Figure 3 shows a comparison between the point cloud
library implementations of methods [6], [7] and our
method showing a door. It can be recognized that
our method performs best on flat objects in the real
world. The advantage of our method is illustrated in
Figure 3 (c). Due to the nature of superpixels we are
able to generate normal information in areas where
no depth information was captured. Additionally, it

(a) (b) (c)

Figure 4: (a) depth image of a person, (b-c) com-
parison of problematic areas, the fist row shows the
color information, the second row depicts the result
of our method with a superpixel size of 15 and a
regularization factor of 0.8, the third row shows the
result of [7] with a normal smoothing size of 20 and a
max depth change factor of 0.2, the bottom row shows
the result of [6] with a kd-tree radius search of 5cm.

should be noted that the thin door edge is covered with
the correct normal orientation. The method proposed
by [6] strongly smoothes the scene and [7] increases the
shadow area.
In Figure 4 we compare the methods with selected

details of a scene showing a human. The face detail in
Figure 4 (b) shows that normals are well approximated
even for natural shapes. The hand detail in Figure
4 (c) reveals that with our proposed method the full
hand region is covered within the normal map, while
the other methods reduce the size of the hand.
Our final test scenario in Figure 5 shows an untidy

office with round and flat objects in the near (< 2m)
and far space. Figure 5 (c) and (d) illustrate the
effect and importance of the superpixel size. Small
superpixels need to be used for small and round objects
in near space. Bigger superpixel size consequently
reduces details of objects in the scene, while huge
homogenous planes such as the ground floor or walls
can be easily covered.
The runtime of our proposed method is strongly

dependent on the superpixel size. Clustering the color
image into bigger superpixel increases the computa-
tional complexity. Within our current implementation
the SLIC superpixel method consumes around 2/3 of
the computational time. Hence, a normal map with a
superpixel size of 8 pixels is computed approximately
in 0.8 seconds. However, this could be enhanced with
a GPU base SLIC implementation.

5 Conclusion

In this paper we presented a simple but novel
method to compute a normal map in the image space
by exploiting the RGB-D-sensory information. The
quality of the normal map is still depending on the
noise characteristics of the underlying imaging tech-
nology. We showed that superpixels can be used for
clustering the color image in logically connected tiles
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(e) (f) (g) (h)

Figure 5: (a) color image, (b) depth image, (c) our method with a superpixel size of 8 and regularization factor of
0.8, (d) our method with a superpixel size of 25 and regularization factor of 0.3, (e) [7] with a normal smoothing
size of 20 and a max depth change factor of 0.2, (f) difference map of the near space (0.2m - 2.1m) of Figure 5 c
and e, (g) [6] with a radius search of 10cm, (h) difference map between Figure 5 c and g.

and the supplemented depth information for comput-
ing the normals in this region. However, this method is
strongly dependent on the light condition of the scene.
The quality of our normal estimation is evident under
normal light condition. The method preserves the true
shape of objects without blurring or shifting the object
edges. The only drawback is that round objects are
difficult to approximate by superpixel tiles. For such
object types the local normal error is increased. As
a solution the ratio of the three eigenvalues could be
investigated in a future work to predict the roundness
of each superpixel. Besides, improvements are planned
to use a GPU variant of the SLIC algorithm in order to
make our method computable in real time. Addition-
ally, we plan to use this method in conjunction with
DP-Means-Clustering for RGB-D image segmentation.
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