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Abstract

3D modeling of point clouds is an important but
time-consuming process, inspiring extensive research
in automatic methods. Prior efforts focus on primitive
geometry, street structures or indoor objects, but indus-
trial data has rarely been pursued. Our work presents
a method for automatic modeling and recognition of
3D industrial site point clouds, dividing the task into 3
separate sub-problems: pipe modeling, plane classifica-
tion, and object recognition. The results are integrated
to obtain the complete model, revealing some issues
during the integration, solved by wutilizing information
gained from each individual process. — Erperiments
show that the presented method automatically models
large and complex industrial scenes with a quality that
outperforms leading commercial modeling software and
18 comparable to professional hand-made models.

1 Introduction

3D point cloud modeling (fig. 1) is a crucial precondi-
tion for many applications, such as intelligent scene un-
derstanding, robotic navigation and augmented reality.
It is a very time-consuming process, requiring manual
labeling and creation of surfaces and their connections.
In this paper, we describe a method for automatic
3D modeling and recognition of an industrial scene
from 3D point cloud data. Our 3D model includes
polygons or other 3D surface representations and
their connectivity. The scene will be recognized by
separated processes into pipes, planes, and various
types of objects, providing metadata for the models.
Creating such models currently requires extensive time
by skilled modelers, even using the best software tools
available today.

We consider industrial point cloud to be a congrega-
tion of pipes, planes and objects, and each part of the
data is handled separately. Two of them are processed
through primitive extraction that detect cylinder and
planar geometry in the scene and estimate models
and parameters to fit the evidence. The connecting
regions between primitives are evaluated to determine
the existence and type of connection joint. Objects
are modeled through recognition, with a 3D object
recognition process that matches clusters of 3D points
to objects stored in a prebuilt object library. The
best-matched library object is used to represent the
point cluster, with its library mesh model replaced
at the recognized locations. Combination of primitive
extraction and object recognition processes complete a
3D model for a complex industrial scene. The individ-
ual processes can also benefit from each other’s results
during the integration to align objects and primitives,
fill gaps and reduce recognition complexity. With
the separately modeled pipes, planes and objects, the
merged components are freely displayed in either mesh
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Figure 1: (a) Original industrial point cloud. (b) 3D
models automatically built by our method.

model for efficiency or point cloud for accuracy, which
won’t be achievable in traditional methods. Several
industrial point cloud datasets are used in experiments
to demonstrate the performance of our method. The
completeness and quality of our models is compared to
a leading commercial modeling product [8] as well as
hand-made models by professional service providers.

Our main contributions include:

e Describe an method combining pipe modeling,
plane classification, and object recognition that
automatically models 3D industrial point clouds.

e Propose to model complicated industrial object
point clouds by 3D recognition and then replace-
ment with library models.

e Utilize results from individual processes to solve
some issues that arise in the results integration.

e Present results for several challenging data sets
and a multi-mode display capability, uniquely
achievable with our method.

2 Related Work

3D point cloud scans are often used to model planar
surfaces [1, 2], or recognize specific categories of street
objects [3, 4] and indoor objects [5, 6]. In contrast,
industrial site scans are a much neglected scenario,
including a wide variety of shapes and structures.
While pipes and cylinders are prevalent, their junctions
are complex, and often connect to valves, pumps,
and instrumentation. Existing methods for industrial
point cloud modeling [7] are not able to process a
point cloud scene containing both primitive shapes
such as cylinders, pipes and planar surfaces, as well
as objects such as valves, pumps and instrumenta-
tions, and also the interconnections between them.
Specialized commercial software [8] can automatically
extract pipes and allow interactive editing of pipe
networks from LiDAR scans of industrial scenes, but
performance is not satisfactory, and it completely
ignores other scene objects. Hand-made models may
achieve arbitrary levels of detail and fidelity, but
human mistakes are also common in such models due to
fatigue and complexity. Recent advances in primitive
extractions [9, 10] and 3D object recognition [12] in
industrial data help us develop our 3D industrial point
cloud modeling algorithm by dividing and solving
several sub-problems.
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Figure 2: Algorithm flow - relationship of each process and results merging issues.

3 Algorithm

The core idea of our 3D modeling algorithm is
to treat an industrial point cloud as a congregation
of pipes, planes and objects. Pipes and planes are
individually extracted by separate processes for pipe
modeling and plane classification. Objects are modeled
through 3D object recognition then replaced with li-
brary object models. The complete model is produced
by merging results from the three independent steps,
which can benefit from each other during integration.
This results in an overall better complete model, which
is another benefit of modeling pipes, planes and objects
separately.  The relationship of each process and
merging issues are illustrated in the diagram in fig. 2.

3.1 Primitive Extraction

Since pipe-runs are critical and prevailing shapes in
typical industrial sites, we explicitly detect pipe-runs in
the first place. The pipe-run modeling is implemented
based on the work in [9], which takes 3D raw point
clouds as input and extracts pipes and reconstruct
joints in the scene into a complete pipe network.

Many points in an industrial scene are part of
planes (e.g. ground, platforms and boxes), thus
identifying clusters of such points will greatly ease and
accelerate the overall modeling process and help us
focus on objects with finer details. The planar surface
points classification scheme presented in [10] is applied,
combining the SVM-based classification with the Fast
Point Feature Histogram (FPFH) [11] as descriptor to
characterize the neighborhood of each point.

3.2 Modeling Objects by Recognition

After primitive shapes such as pipes and planes are
extracted, more complicated objects will be modeled
following an idea of modeling by recognition, using the
3D object recognition algorithm in [12]. Each class of
object has a detector trained using Adaboost, which
detects 3D objects in an exhaustive window-scanning
search, achieving a recall rate of 85.5% under cluttered
and noisy industrial scenes. The use of 3D summed
area table helps ensure the algorithm efficiency (e.g.
detecting a 10k points object in a middle-size industrial
scene with 10 million points takes about half an hour).
After the objects are recognized, their library models
will be replaced at the recognized location to complete
the modeling for objects. Multiple objects in the
library can be detected independently in parallel for
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efficiency, with detection results merged according to
confidence.

3.3 Object Alignment

Each type of objects is recognized independently by
exhaustive window search with a discrete step size,
and each object instance is detected independently
as a local confidence maximum. As a result, the
recognized location of objects may appear with a
small displacement from original location, and thus not
aligned with each other like in fig. 3(b)!. After merged
with the pipe models, the visual artifacts caused by
these small displacements are worsen, because most
objects are supposed to be aligned with pipes.

To solve this issue, we utilize the information gained
from pipe models, by trying to align the detected
objects with one of the pipe segments. Each modeled
pipe segment has an axis vector, two endpoints and
a radius. Each type of target object supposed to be
connected to a pipe (usually with a pipe-shaped base
equivalent to a pipe segment) will also be defined with
an axis and two endpoints. After results are merged,
each detected object will be attempted to align with
a nearby pipe segment in similar orientation, so the
endpoints lie on the same axis. As shown in fig. 3(c), all
objects in the scene are aligned with a pipe segment.?

3.4 Pipe Generation in Gaps

In fig. 3(c), there is a single object on the left
separated from others, but still aligned. It seems a
pipe segment is supposed to connect the object to
others, but pipe modeling failed to do it because it’s
not long enough to establish a confident pipe segment
there. Nonetheless, it’s still long enough to become a
visual artifact. It’s not easy to solve this by the pipe
modeling process alone, but the detected and aligned
objects provide extra information. All objects and pipe
segments with similar axis will be analyzed. If two
objects on the same axis has a small gap in between,
we can predict there might be a pipe segment should
connect them. But coaxial pipe segments may not
always be connected, so the predicted pipe segment

IPlease note that some object models are inconsistent with the point
cloud (e.g. short horizontal pipe on pump head, smaller valve handle)
because of the data provider, not the error of our algorithm (we are only
replacing their object CAD models at object locations recognized by our
algorithm in 3D point clouds).

2Notice that the objects may appear slightly overlapped because library
models from source data is not accurate - bigger than actual point cloud.
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Figure 3: Comparison of gradually improved modeling results by our algorithm. (a) Original industrial point
cloud. (b) Unaligned results after merging pipe models and detected 3D objects. Red lines mark object axes.
Notice the small relative displacement between objects. (c) Objects are aligned to pipes (compared to (b)). Red
line marks the aligned axis. (d) Pipe segments are predicted in small gaps between objects on the same axis.

(d) (e) 69}

Figure 4: (a) Results by our automatic 3D modeling,
with detected objects rendered in point cloud. (b) Re-
sults by our method, with detected objects rendered
in mesh models. (¢) Results by our method, with
detected objects replaced by data at corresponding
location from the original point cloud. (d) Original
point cloud. (e) Manual CAD models by professional
modelers with one extra (mistaken) pipe line and oth-
er small errors. (f) Models by commercial software [8]
with lots of errors but none of the objects.

will need to be verified with the original point cloud.
Fig. 3(d) shows the gap is filled successfully.

3.5 Other Integration Features

In industrial scenes, flange is a special type of
object that is too complex to be captured by pipe
modeling, but yet too simple to be recognized by object
recognition with both good precision and false alarm
rate. However, the extra pipe information can help
locate the flanges successfully through 3D point cloud
object recognition. Since flanges should always align
with a pipe, searching only along (but not limited to)
the established pipe axis can ensure good precision
while effectively reducing false alarms.

Exhaustive searching in 3D space for 3D object
recognition is very time-consuming. However, we have
primitive shape points of pipes or planes, which are
usually not considered as objects. Therefore, to reduce
search space, we may remove all the points belonging
to pipes or planar surfaces from the original point
cloud, resulting in a residual point cloud. The object
detector can then limit its search space according to
the residual points. However, many industrial objects
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usually contain part of pipe or plane, such as T-
junctions or pumps, which might be incomplete after
points removal. The solution is to use both point
clouds: the residual for locating search windows, and
the original for computing and evaluating the detector.

4 Results

4.1 Display Modes

Fig. 4(a, b, ¢) shows the models created by our
method for a large industrial scene. Pipes, planes
and objects are rendered in different colors, showing
they are independently recognized and modeled. The
result can be freely displayed in either mesh model for
efficiency or point cloud for accuracy, not achievable in
traditional methods. Individually detected and labeled
components also open the possibility for extra meta-
data and interaction in virtual environment. Fig. 4(a,
b, ¢) demonstrates three display modes, with objects
displayed in point clouds, mesh model or original point
cloud data cropped at detected location, respectively.
While mesh models are more efficient, highly precise
mesh model is hard to come by due to time and effort
required, thus it’s usually less accurate than point
cloud display. With separately recognized components,
we can choose to display the more accurately modeled
primitives in mesh model, while leaving complex ob-
jects in point cloud. Rendering part of the results in
point cloud mode is not just a simple clone, but more
precise reconstruction of the original point cloud, while
still preserving the meta-information of the recognized
primitives and objects.

4.2 Comparison

Fig. 4(a, b, ¢) present the modeling results by our
method in different display modes. Fig. 4(d) provides
the original point cloud for reference. Fig. 4(e) shows
the CAD models bundled with the source data, man-
ually created by professional service providers. The
hand-made model has 4 pipe lines on the top platform,
which is wrong compared to the original point cloud
who only has 3. On the other hand, our method
correctly modeled the 3 pipe lines, showing that our
automatic method sometimes even outperform human
eyes in complex scenes. In addition, some objects in
the CAD model are very inaccurate, such as the small
valves. The problem will not present if we render the
objects in point cloud as in fig. 4(a, ¢). The hand-made
model is also worse on rails and platforms. Fig. 4(f)
shows the result by a leading commercial automatic
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Figure 5: (a) Complete industrial scene reconstruction by our automatic 3D modeling method. (b) Original point
cloud. (c¢) Models by commercial software [8]. (d) CAD models hand-made by professionals, cleaner but lose too
much details. (e) Results by our method on more industrial scenes and datasets.

modeling product, ClearEdge 3D [8], which is only able
to correctly model some pipes but none of the objects,
together with lots errors.

4.3 Complete Reconstructed Scene

Fig. 5(a) shows a full industrial scene reconstruction
result by our automatic 3D modeling method, demon-
strating its capability in handling large-scale complex
data. Fig. 5(c) shows the result by ClearEdge 3D [8],
almost unrecognizable. Fig. 5(d) shows the hand-made
model by professionals, which does look cleaner but
loses too much details compared to our result, and
contains some inaccuracies. Fig. 5(b) is the original
point cloud. Fig. 5(e) presents more results of our
method on other industrial datasets and scenes.

5 Conclusion

In this paper, we present a 3D modeling algorithm to
automatically create models from 3D industrial point
clouds. We recognize and model pipes, planes and
objects in individual steps, and utilize their results to
further improve each other and solve some issues that
arise when integrating separate results into complete
models. Pipes, planes and different types of objects
are recognized separately, allowing freely switchable
display in mesh model and/or point cloud for balanced
efficiency and accuracy. Experiments show that our
method can successfully model large complex indus-
trial point clouds, outperforming leading commercial
automatic modeling software, and comparable to pro-
fessional hand-made models.
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