
A Framework Unifying the Development of Image Analysis
Algorithms and Associated User Interfaces

Birgit Möller and Stefan Posch
Institute of Computer Science, Martin-Luther University Halle-Wittenberg,

Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany
{birgit.moeller,stefan.posch}@informatik.uni-halle.de

Abstract

Solving image analysis problems not only requires
the development of suitable sets of algorithms to pro-
duce desired result data, but also demands for suitable
user interfaces (UIs) to foster use in practice. Here we
present our library Alida which aims to promote the
deployment of UIs by featuring their automatic gener-
ation from algorithm code. Alida supports command
line and graphical UIs (GUIs), and ships with a graph-
ical editor for designing more complex workflows. En-
forcing only a small set of rules to obey Alida signifi-
cantly reduces implementation overhead for developers
and allows for focusing on algorithm rather than UI de-
sign. The suitability of Alida’s concept for real-life ap-
plications is shown by the library MiToBo for biomed-
ical image analysis implemented based on Alida.

1 Introduction

The process of automatically analyzing image data
can generally be understood as a sequence of individ-
ual analysis steps applied to data. These steps are
performed sequentially, in parallel, or in a nested fash-
ion and transform given input data into application-
specific result data. Often each single step of such
analysis pipelines is associated with a specific process-
ing unit or operator implementing functionality and
performing the actual work on the data.
Consequently, the development of complex image

analysis pipelines comprises two issues. On the one
hand it subsumes the development of suitable opera-
tors, and on the other hand it requires their combina-
tion into pipelines through which the data is propa-
gated to solve a task at hand. Besides these two fun-
damental issues the availability of suitable UIs on the
programming as well as on the user level is equally
important. Particularly the latter ones are inevitable
to pave the path for newly developed algorithms into
practice where non-expert users are highly interested
in using the software to solve their problems.
Although a great consent is to be expected within

the community regarding the necessity of handy user
interfaces to be available, nevertheless their develop-
ment is too often neglected in practice. The main
reason for this is the significant amount of additional
workload for interface design and implementation.
In this paper we present an approach for closing the

gap between algorithm and pipeline design on the one
side, and the development of UIs on the other. Our
key contribution is to provide a development environ-
ment in terms of a Java library which inherently in-
tegrates the development of algorithms and UIs, and

which is publicly available under GPL license1. This
library named Alida defines operators as key compo-
nents and requests developers to implement these by
following general rules. Each operator has to support
inquiries for its input and output parameter data types
and values. In addition operators have to be invoked
by a unified procedure enabling generic handling of all
operators.

These guidelines may seem to restrict developers in
their design options, but they only enforce a minimal
set of rules as will become obvious in Sec. 3. Moreover,
by embedding new operators into the environment pro-
vided by Alida all operators are natively accessible
through a unified API on the programming level, ren-
dering their use within code quite easy. Finally, these
rules lay the foundation for automatically generating
graphical as well as command line UIs for all oper-
ators in a generic fashion (Sec. 4). They also enable
the export of operators into more complex applications
like graphical editors for pipelines in a straightforward
manner. Accordingly, such an editor is also included
in Alida and consequently extends the comfortable de-
velopment and application of single operators towards
user-friendly graphical pipeline design (Sec. 5).

2 Related Work

For many image analysis problems well-established
algorithmic solutions have emerged over time. They
are often collected in libraries like OpenCV [3] or
ITK [6], or in commercial tools like Matlab. While
this fosters wide-spread use, the lack of handy user in-
terfaces still forms a barrier. Although OpenCV and
Matlab provide basic components like windows and
buttons for interaction, the implementation of GUIs
is still left to the developer of a certain application.

For the development in Java libraries and toolk-
its like JAI [11] and ImageJ [1], which is a toolbox
of image analysis algorithms widely-used withing the
biomedical community, aim to simplify operator de-
velopment providing an embedding framework. While
JAI is focused on unifying parameter handling and op-
erator invocation, the new version 2.0 of ImageJ2 also
includes mechanisms for automatic generation of GUIs.
Our concept Alida surpasses this by featuring advanced
concepts for handling operator parameters (cf. Sec. 4),
handy command-line tools, and support for automatic
process documentation [9].

For designing analysis pipelines various tools are
available. While the graphical workflow editor Ke-
pler3 does not target at a specific field of application,

1http://www.informatik.uni-halle.de/alida/
2http://developer.imagej.net/
3https://kepler-project.org/

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN14-22

447

KNIME [2] is dedicated to data mining and natively
supports image processing. However, extending these
tools with new functionality is not always straightfor-
ward. Our library Alida is designed for data analysis in
general, but we have also deployed the image process-
ing library MiToBo based upon Alida and dedicated
to biomedical imaging which proves the suitability of
our concept in practice (Sec. 6). It is deeply integrated
into ImageJ overcoming the need for non-expert users
to adapt to a completely new environment for applying
operators and developing their workflows.

3 Basic Concepts

As outlined in the introduction, Alida defines op-
erators as the basic units for data analysis. Taking
an object-oriented approach an operator is expected
to extend the common super class ALDOperator and
to implement its functionality by overriding specific
methods.
All data to be processed, controlling manipulation,

or to be returned as result from an operator are consis-
tently denoted as parameters. The role of a parameter
is specified via its direction, which may be IN, OUT,
or INOUT. A typical example is a filter applied to an
input image (direction IN) where the filtered image is
returned in a newly allocated data structure as a pa-
rameter with direction OUT. If the filter acts destruc-
tively in place, this is described by a single parameter
of direction INOUT. A parameter controlling the filter
operation, e.g. a bandwidth, is provided as an IN pa-
rameter. Parameters of direction IN and INOUT may
be either required or optional to simplify operator con-
figuration. In addition Alida supports supplemental
parameters which in contrast to required and optional
ones must not influence processing results. Examples
include flags to control debug messages or intermediate
results to be returned from operators after execution.
For defining and accessing the parameters of an oper-

ator Alida makes use of Java’s annotation mechanism.
Parameters can easily be added by simply annotating
member variables of the operator class. In addition,
the annotations also allow to easily query an opera-
tor for all its parameters including their type, role and
current value at run time using methods supplied by
the common super class ALDOperator.

To make use of an operator’s functionality an in-
stance of the class needs to be created and its IN
and INOUT parameters have to be set. Processing
is invoked calling the generic runOp() method sup-
plied by ALDOperator. This method subsumes an au-
tomatic parameter validation, e.g. it checks whether
all required parameters are provided, and optionally
enforces operator-specific constraints, e.g. admissible
ranges of parameter values. Subsequently the opera-
tor’s operate() method is called performing data ma-
nipulations, and finally the results are made available
via the output parameters of the operator.
As outlined in the introduction image analysis prob-

lems usually require a combination of operators to be
applied to data rather than only a single one. Con-
sequently Alida natively supports the development of
complete pipelines for data processing by providing the
class ALDWorkflow. This class represents a processing
pipeline as a set of operators. It allows for establishing

links between OUT and IN parameters of different op-
erators by which a flow of data and control and thus a
pipeline can be realized.
A workflow in Alida also features entry and exit

points for data into and out of the whole pipeline.
These points have essentially the same role as param-
eters for operators, hence, they share exactly the same
properties, e.g., have a direction and may be required
or optional. This naturally implies to implement
ALDWorkflow extending the super class ALDOperator
of all operators. The operate() method of a work-
flow object invokes all included operators in topologi-
cal order and forwards output data between operators
according to the data flow. To facilitate graphical pro-
gramming, the class ALDWorkflow also supplies meth-
ods to invoke only part of the processing pipeline, to
save and load workflows, and offers an event mecha-
nism for GUI components to register, thus facilitating
a Model-View-Controller architecture (cf. Sec. 5).

4 Automatic User Interface Generation

The operator concept of Alida with its clearly de-
fined specification of parameters and its standardized
invocation procedure lays the basis for generic imple-
mentation of UIs. To facilitate generic configuration
and execution of operators such UIs are required to
allow for the input of parameter values, to invoke the
operator, and finally to publish the results.
In Alida the Model-View-Control design pattern [4]

is used to achieve maximal independence between the
operators implementing the functionality, the I/O of
data objects, and the graphical and textual UIs. As
input and output mechanisms of individual data items
are data type specific, I/O functionality is also com-
pletely encapsulated in data I/O providers hiding any
data type specific knowledge from the generic viewers.
To endorse the development of new functionality Al-

ida already includes various providers which facilitates
I/O for a wide variety of Java objects out of the box
and overcomes the need for programmers to implement
I/O capabilities. Besides providers for all primitive
data types and arrays Alida subsumes general purpose
providers for all enumeration types, collections, and
so-called parametrized classes. An arbitrary class may
be declared as parametrized class, and any subset of
its member variables as class parameters, both via an-
notations. This is sufficient for Alida’s general purpose
providers to handle this class as an operator parameter.
Likewise operator objects by itself may act as param-
eters of other operators. Only specialized classes like
images or contour sets require additional providers to
be implemented, but these can easily be added to the
library with no need to modify the code of Alida.

4.1 Command line

Building on this infrastructure Alida features a com-
mand line operator runner (CLR) to invoke all oper-
ators via console or scripts. All input parameters are
supplied as arguments by ’name=value’ pairs. To ease
the handling of class inheritance, parametrized classes
and operators as parameters in a generic fashion, the
CLR features a flexible parser for argument preprocess-
ing. It allows for parsing CLR calls like the one shown
in Fig. 1. The operator SnakeOptimizerCoupled

448

java OpRunner SnakeOptimizerCoupled i n i t i a l S n a k e s=RoiSet . xml inImg=c e l l . t i f
outSnakes=snakesOut . xml snakeOptimizer=’ $SnakeOptimizerSingleVarCalc :{ energySet=
{ en e r g i e s =[$MTBSnakeEnergyCD CVRegionFit :{ lambda in =1.0 , lambda out =5.0}] , we ights = [1 . 0]}} ’

Figure 1. Example call of an operator from command line. The operator SnakeOptimizerCoupled called
here among others takes an operator of type SnakeOptimizerSingleVarCalc as input parameter.

for multiple snake segmentation not only takes ini-
tial snakes and an image as input, but also an opera-
tor instance of SnakeOptimizerSingleVarCalc deal-
ing with a single snake (cf. Fig. 2, right). The syntax
of the individual value strings is defined by the specific
I/O providers they are finally passed to and which, by
convention, also allow values to be read from file. Anal-
ogously output parameters are specified as name–value
pairs allowing to, e.g., redirect output into files, as an
alternative to formatting the values onto standard out.

4.2 Graphical user interface

A GUI is supposed to support graphical configura-
tion and execution of operators. Unlike the command
line UI a graphical front-end to choose, configure and
execute operators is also well-suited for interactive ex-
ploration of image processing, e.g. for online inspec-
tion of the effects of parameter changes during rapid-
prototyping. The GUIs currently provided by Alida
are implemented based on Swing, but this is not a fun-
damental restriction as other frameworks likewise web
interfaces can be added in a straightforward way.

As soon as the user has selected an operator from the
choice of available operators, a window to configure it
and control its execution is automatically generated
(cf. Fig. 2 on the right, which shows the GUI for the
operator SnakeOptimizerSingleVarCalc introduced
above). To this end the operator is first queried for
the types of its input and output parameters. Sub-
sequently for each parameter a corresponding graphi-
cal component is generated using the provider mecha-
nism outlined above. All components are arranged in
a frame whereas required, optional and supplemental
parameters are grouped into different sections. Be-
sides these components for operator configuration al-
lowing for user inputs, the window also contains but-
tons for controlling operator execution and enabling
interaction (if the operator supports that). In addi-
tion a menu-bar is available containing items, e.g., for
accessing online help or saving and loading the configu-
ration to and from file. After execution of an operator
result data is displayed to the user again adopting the
provider mechanism for generating graphical compo-
nents for each output parameter.

The configuration and control window acts as con-
troller and likewise observer of the underlying operator
and its status. The configuration status of the operator
is synchronized online with the window and vice versa.
E.g., parameters that are required, but do not yet have
suitable values are marked in red, and the color of the
run button indicates whether the operator is ready for
execution or not. On the other hand changes in the
parameters made by the user are directly propagated
to the operator and induce an instant update of its
configuration and potentially also its status.

5 Graphical Programming

Designing more complex analysis pipelines featuring
the combination of various operators can be facilitated
in a comfortable, intuitive and user-friendly way by
graphical programming editors. The underlying idea
of these tools is to translate the design process into
a graph editing task. Operators are represented by
nodes, and edges in-between indicate the flow of data
and control. Obviously Alida is an optimal foundation
for such an editor. Its workflow concept is natively
qualified as basis since it inherently defines a computa-
tional model of workflows. And also the clearly defined
concept of operators renders it very easy to adopt op-
erators as basis for configurable nodes within a graph
data structure associated with a processing pipeline.
They are handled in a generic fashion similar as in the
context of UI generation discussed earlier.

The graphical editor Grappa included in Alida is
built on these ideas (Fig. 2). It automatically includes
all available operators into a menu (left of Fig. 2) from
where the user can select operators for a workflow. For
each operator a corresponding node is generated on the
workbench showing the parameters of the operator as
ports. These ports can be linked by edges resulting
in a working cycle intuitive also for non-experts. For
graphical node configuration each node is linked to a
configuration window where the same components and
mechanisms as for automatic GUI generation are used.
Once pipeline design and configuration are completed
the workflow graph can be executed either completely
or in parts, e.g., only up to a certain node. After ter-
mination the results are displayed to the user again
reusing mechanisms from GUI generation. Similar to
the concepts of graphical operator configuration and
control, the editor acts as controller and observer. The
node color is updated according to the current status of
the underlying operator in synchrony with changes in
the configuration window which yields an intuitive vi-
sual guidance in pipeline configuration and execution.

6 Alida in Practice

The development of image analysis algorithms for
biomedical applications natively requires deep links be-
tween algorithm developers and (non computer scien-
tist) users. Algorithmic improvements and adaptations
can most of the time best be done based on direct prac-
tical evaluations in the lab, and the frequent introduc-
tion of new imaging techniques and types of data both
request for topical availability of appropriate software.

We meet these requirements by implementing our
image analysis algorithms based on Alida, i.e. each al-
gorithm is implemented as operator. The set of all
operators is collected in the toolbox MiToBo which
inherently supports execution of all available opera-
tors from command line as well as graphically. For
straightforward usage the graphical front-end to select,

449

Figure 2. Screen-shot of the graphical editor for user-friendly pipeline design with its selection menu and
workbench (left), and an automatically generated configuration and control window for an operator (right).

configure and execute operators is available as plugin4

for ImageJ, a tool extensively used by our biomedical
cooperation partners. This way algorithmic improve-
ments and extensions can directly be released for prac-
tice in terms of new ImageJ plugins. By this users get
software for current problems soon, and the develop-
ers earn topical feedback, in conclusion yielding great
benefits for both sides.
Over the years a broad collection of algorithms for

basic image processing tasks like morphological opera-
tions, filtering or labeling, as well as for specific areas
of application, e.g., for sub-cellular particle detection
[8], cell segmentation based on active contours [10, 7],
or analysis of scratch assay images [5] have been devel-
oped. In addition the toolbox subsumes a plugin ver-
sion of the editor Grappa (Sec. 5). Besides, non-expert
users also benefit from some user-friendly built-in fea-
tures of Alida not discussed here in detail, e.g., the au-
tomatic documentation of parameters used in analysis
procedures simplifying communication between devel-
opers and users [9], or the option to filter as well the
set of operators in the graphical selection menu as also
the parameters of an operator displayed in the GUI.

7 Conclusions

Alida offers an integrated approach for unifying the
development of image analysis algorithms and more
complex analysis pipelines on the one hand and intu-
itive user interfaces on the other. Its underlying con-
cept of operators lays the foundation for easy use of
operators through a unified API on the programming
level as well as for automatic generation of command
line and graphical user interfaces on the user level. The
concept results in a great flexibility which also becomes
obvious in the graphical editor Grappa included in Al-
ida. For its implementation Alida’s functionality with
regard to operator execution and pipeline design had
to be made available through appropriate graphical
components, however, did not induce any conceptual
changes in the underlying core. And the flexibility is
not yet exhausted. It is obvious that the workflows of
Alida being by themselves operators already inherently

4http://www.informatik.uni-halle.de/mitobo/

support the concept of hierarchical workflows which is
currently being transferred to and implemented in the
graphical editor. Finally, a batch mode is currently
under development for automatically running opera-
tors on sets of values for specified input parameters to
further ease algorithm tuning for developers and algo-
rithm usage for non-expert users.

References

[1] Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image
processing with ImageJ. Biophotonics Int 11(7), 36–
42 (2004)

[2] Berthold, M.R., et al.: KNIME - the Konstanz In-
formation Miner: version 2.0 and beyond. SIGKDD
Explor. Newsl. 11(1), 26–31 (Nov 2009)

[3] Bradski, A.: Learning OpenCV: Computer Vision with
the OpenCV Library. O‘Reilly Media (2008)

[4] Fowler, M.: Patterns of Enterprise Application Archi-
tecture. The Addison-Wesley Signature Series (2003)

[5] Glaß, M., et al.: Cell migration analysis: Segmenting
scratch assay images with level sets and support vec-
tor machines. Pattern Recognition 45(9), 3154–3165
(2012)

[6] Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK
Software Guide, 2. edn. (November 2005)

[7] Möller, B., Posch, S.: Comparing active contours for
the segmentation of biomedical images. In: IEEE Int.
Symp. on Biomedical Imaging. pp. 736–739 (2012)

[8] Möller, B., et al.: Adaptive segmentation of particles
and cells for fluorescent microscope imaging. In: VISI-
GRAPP 2010, Revised Selected Papers of Int. Joint
Conf. on Comp. Vision, Imaging and Comp. Graph-
ics. Theory and Appl. vol. 229, pp. 154–169 (2011)

[9] Möller, B., Greß, O., Posch, S.: Knowing what hap-
pened - automatic documentation of image analysis
processes. In: Proc. of Int. Conf. on Comp. Vision
Systems. LNCS, vol. 6962, pp. 1–10. Springer (2011)

[10] Möller, B., Stöhr, N., Hüttelmaier, S., Posch, S.: Cas-
caded segmentation of grained cell tissue with active
contour models. In: Proc. of Int. Conf. on Pattern
Recognition (ICPR). pp. 1481–1484 (2010)

[11] Sun Microsystems, Palo Alto, CA 94303, USA: Pro-
gramming in Java Advanced Imaging (1999), Rel. 1.0.1

450

