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Abstract

Visual quality inspection plays an important rule in
quality control. With visual inspection it is ensured that
the inspected surface meets the requirements; that the
surface is free of irregularities, such as cracks, dents,
and scratches. Detection of irregularities can, however,
be a challenging task, especially on complex surfaces,
where it is necessary to differentiate between surface ir-
regularities and expected surface variations. Differen-
tiation is done by comparing a sample with a reference
model, which requires an accurate spatial alignment be-
tween the two. In this paper we focus on visual quality
inspection of pharmaceutical tablets. While inspected,
tablets are mechanically constrained, thus alignment
simplifies to in-plane rotation estimation. For in-plane
rotation estimation we propose a method using his-
tograms of oriented gradients (HOG) and a nearest-
neighbor regression in HOG feature space. Method was
evaluated on four datasets of pharmaceutical tablets,
varying in size, shape and color. The results show
that the proposed method is superior in robustness, with
comparable accuracy to the methods previously used for
rotation estimation of pharmaceutical tablets.

1 Introduction

All pharmaceutical tablets must be uniquely
marked, to enable unique identification and to avoid
hazardous mix-ups. Due to imperfect production pro-
cess a compliant visual appearance is ensured by visual
inspection [1], [2]. Visual inspection of pharmaceuti-
cal tablets is a difficult task, especially of tablets with
complex geometries, because it is necessary to differen-
tiate between defects and expected surface variations.
Differentiation is done by comparing a sample with an
ideal reference model which, however, requires an ac-
curate spatial alignment between the two.
In this paper, we address the spatial alignment of

pharmaceutical tablets for visual quality inspection of
pharmaceutical tablets [1]. While inspected, tablets
are mechanically constrained. This simplifies the align-
ment to in-plane rotation estimation (Fig. 2). Never-
theless, rotation estimation of pharmaceutical tablets
is a challenging task, because tablets vary in shape,
color, texture, and because of high speed requirements.
The task is additionally challenging because of normal
intra-tablet variability which is a result of imperfect
production process.
Špiclin et. al [3] proposed the following three

registration methods for in-plane tablet rotation es-
timation: Direct Pixel Matching (DPM), Principal
Axes Matching (PAM), and Circular Profile Matching
(CPM). The first method (DPM) evaluates the nor-
malized cross-correlation of a sample image and the
rotating reference image. A rotation angle is deter-
mined by the maximum value of the normalized cross-
correlation. By contrast, circular profile matching is
based on extraction and alignment of circular profiles.
Circular profiles are obtained by the radial integration
(I(φ) =

∫ r2
r1

I(−r sinφ, r cosφ) dr) within a ring cen-
tered at the tablet center. By integration the 2D image
I(x, y) is reduced to 1D profile I(φ) – the angle is esti-
mated by 1-D cross correlation of reference and sample
circular profile: Ir(φ)∗Is(φ). PAM as the third method
estimates the angle by matching principal axes of the
reference and a sample object [4]; method is suitable
only for objects with distinctive assimetric structures.
Morever, this approach requires additional verification
step, due to residual ±π sign ambiguity.

Described methods used for rotation estimation are
rather basic, because of speed requirements (< 5 ms
per estimation). Methods work sufficiently well only
if center estimations are accurate (DPM, CPM) or for
objects with distinctive shape asymmetry (PAM). Fur-
thermore, due to global similarity measure (i.e. cross-
correlation), methods are affected by large irregular-
ities that distort the tablet appearance – leading to
inaccurate spatial alignment. An inaccurate spatial
alignement further leads to erroneous inspection re-
sults, and finally to lost profits.

In order to increase position invariance and align-
ment robustness, we propose a feature based approach
to in-plane tablet alignment.

Figure 1. Mechanically constrained inspected
products on a rotating drum.
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Figure 2. Illumination and camera setup. Camera
view is parallel to the tablet rotation axis

2 Rotation estimation

Prior to alignment, all the tablets are segmented us-
ing method proposed by Možina et. al [5], by which an
object center and an object’s bounding window are ob-
tained. Rotation is estimated with a nearest-neighbour
search in HOG feature space. A rotation angle φ (Fig.
2) for each sample image Is is estimated by mapping
the sample image to HOG feature space then searching
for a nearest neighbour in the reference set T (φ). The
reference set contains HOG feature representations for
reference object at different angles, and is constructed
by rotating the reference image Ir by φ; we assume
a similar object appearance, regardless of the rotation
angle.

The method is described in three steps. First, we
briefly describe Histograms of Oriented Gradients, sec-
ond we describe a procedure for reference set construc-
tion, and finally we describe the rotation estimation.

2.1 Histograms of Oriented Gradients

Dalal and Triggs [6] proposed Histograms of Ori-
ented Gradients, to answer the question of feature sets
for robust visual object recognition. Histograms of Ori-
ented Gradients feature set is obtained from a grid of
spatial cells; each spatial cell contains a k-bin weighted
(with absolute gradient) histogram of vector orienta-
tions. Spatial cells are concatenated into larger blocks
of N×M cells and normalized to a L1 (

∑
i |xi| = 1) or

a L2 (
√∑

i x
2
i = 1) unit length. Finally, vectors over

all blocks are merged to a HOG feature vector (Fig. 3).
Subsequently, Zhu et. al [7] proposed an integral image
(Fig. 4) approach to HOG calculation. This approach
enables a constant time calculation of histograms of
oriented gradients over arbitrary rectangular regions.
For integral image based HOG calculation, a separate
integral image is stored for each histogram bin. First,
an image Ib is initialized for each histogram’s bin, then
a gradient orientation at each image’s pixel is bilinearly
interpolated; results are stored in the corresponding
image. Lastly, an integral image for each histogram
bin is calculated from each image Ib. Value for each el-
ement of HOG vector is independently calculated from
the corresponding integral image – calculation of HOG
vector thus requires 4× k access operations.

DC

BA

Figure 4. The value I(x, y) at any point (x, y) is
the sum of all the pixels above and to the left
of (x, y) inclusive, I(x, y) =

∑x
0

∑y
0 i(x

′, y′) - in-
tegral of pixel values within arbitrary rectangle
ABCD is obtained by I(D)+I(A)−I(B)−I(C).

2.2 Reference set construction

A reference set is built from a single reference image
Iφ rotated in r degree steps around the rotation axis.
Step size r is user determined and determines the the-
oretical upper bound of rotation estimation accuracy.
Next, each rotated image Iφ is transformed to a HOG
feature space Iφ → τφ. As a result of mapping images
Iφ, φ = [0, . . . , 2π] to HOG feature space τφ we obtain
a reference set T(φ).

HOG features are calculated over a deterministically
constructed multi-scale set of cells W ; each scale in
a set determines the size of cells that uniformly tile
the window. By iteratively proceeding from largest to
the smallest scale, cell size is reduced by 2× between
two neighbouring scales, - forming a multi-scale set of
candidate cells.

Reference set T(φ)
Sample
feature
vector τ s

Sample
image

d(T(φ), τ s)

Figure 5. Rotation angle is estimated by a nearest
neighbour search in feature space.

2.3 Rotation estimation

With a reference set T(φ), a rotation angle for each
sample image Is is estimated as follows: first, a sample
image is mapped to a HOG feature space Is → τ s,
with features calculated over all the cells w ∈ W . A
rotation angle is then estimated (Fig. 5) by finding the
nearest neighbour in reference set T(φ):

φestimate = argmin
φ

d(T(φ), τ s) (1)

where d(T(φ), τ s) is an Euclidean distance between
feature vectors τ s and T(φ).
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Figure 3. Histograms of Oriented gradients.

2.3.1 Implementation details

Method was implemented in C++ and compiled
with Visual Studio. The same parameters were used
for all the datasets. Three scales were used to construct
a multi-scale cell set; half object size at start then dec-
imating cell size by 2× with each increasing scale. A
9-bin histogram was calculated for each separate cell,
which was merged to a 2×2 block of cells and normal-
ized to L1-norm. The reference set was constructed
with a 1 degree step. For nearest-neighbour search, we
used an exhaustive search. Use of a space-partitioning
data structure (e.g. kd-tree [8]) was not feasible, due
to high dimensionality of a HOG feature vector.

3 Experiments and results

The proposed method, denoted as HBM, was evalu-
ated on four datasets provided by Špiclin [3]. Eval-
uation datasets were captured with a trilinear line-
scan camera and a fixed illumination on a Sensum
SPINE inspection system (Sensum). An illumination
and camera setup is shown in Fig. 2. Datasets con-
tain 514, 219, 212, and 183 images of tablets RTD73,
ELP20, 500, and LEK respectively, differing in size,
color, and shape (Fig. 6).
To allow objective comparison of the proposed

method, we evaluated registration robustness and ac-
curacy by evaluation criteria proposed by Špiclin et.
al [3]. The robustness of the method was estimated by

(a) (b) (c) (d)

Figure 6. Evaluation datasets. The 500 dataset
contains 212 images of oblong tables (c).
Datasets RTD75 (b), ELP20 (c), and LEK (d)
contain 514, 219, and 183 images of round tablets
respectively.

the percentage of successful registrations (Hits); suc-
cessful is a registration with absolute angular error less
than 5◦. Registration accuracy was measured by the
mean absolute angular error (Eq. 3).

An absolute angular error ε is the difference between
reference angle φref and an estimated angle φestimate:

ε = |φref − φestimate|. (2)

A reference angle φref is obtained with 5 manually
positioned corresponding points {xr

i , y
r
i } on reference

and points {xs
i , y

s
i } on sample image. Angle is obtained

by minimizing the mean square distance between cor-
responding points as a function of angle φref :

[
xr
i

yri

]
=

[
cosφref sinφref

− sinφref cosφref

] [
xs
i

ysi

]

ε =
5∑

i=1

(xr
i − xs

i cosφref − yis sinφref )
2+

5∑
i=1

(yri − xs
i sinφref − ysi cosφref )

2

∂ε

∂φref
=cosφref

5∑
i=1

(xs
iy

r
i − xr

i y
s
i )+

sinφref

5∑
i=1

(xr
ix

s
i + yri y

s
i ) = 0

φref =arctan

∑5
i=1(x

s
iy

r
i − xr

i y
s
i )∑5

i=1(x
r
ix

s
i + yri y

s
i )

(3)

Results for all the methods are presented in Table
1. In addition, Fig. 7 shows a cumulative sum of suc-
cessful registrations with respect to maximum absolute
angular error.

4 Discusion

Method was evaluated on four different datasets of
pharmaceutical tablets. Registration of pharmaceu-
tical tablets is a challenging task, because tablets are
produced in various shapes, sizes, colors, and with var-
ious imprints. Further registration complexity arises
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Table 1. Registration results for HOG based ro-
tation estimation and the three reference regis-
tration methods

RTD75 ELP20 500 LEK

Error (◦)
DPM 1.17 1.17 1.58 0.86

PAM 2.44 2.71 0.80 2.31

CPM 0.72 0.54 0.83 0.75

HBM 0.60 0.74 0.57 1.27
Hits (%)

DPM 100 100 94.3 99.5

PAM 56.0 21.5 86.8 44.3

CPM 100 100 100 99.5

HBM 100 100 100 100
Time (ms)

DPM 109 184 227 191

PAM 1.01 1.42 1.66 1.46

CPM 3.18 3.49 3.01 3.15

HBM 1.52 1.56 1.53 1.57
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Figure 7. Cumulative percentage of successful
registrations as a function of maximum absolute
registration error.

from imperfect illumination and mechanical manipu-
lation, and various surface irregularities. Evaluated
method was compared with three methods described
by Špiclin et. al [3]. Registration speed was recorded,
however, the running times cannot be directly com-
pared, as the methods were executed on different com-
puters. Nevertheless, we can still infer that the pro-
posed method is a feasible option for real-time rota-
tion estimation. The percentage of successful regis-
trations for the proposed method is higher than for
compared methods. The DPM method is directly af-
fected by the outliers caused by product’s defects and
by irregular illumination. By contrast CPM integrates
values over the tablet radius, thus increasing robust-
ness, and performance, but decreasing discriminative
power. This is particulary pronounced with near sym-
metric imprints. The PAM method simplifies rotation
estimaton by matching the principal axes, but is useful

only for objects with distinctive asymmetric structures,
and has a residual ±π sign ambiguity. Accuracy, eval-
uated only for successful registrations, had an upper
bound at 5◦. The accuracy of the proposed method
is comparable with the accuracy of CPM and DPM
while accuracy of PAM is considerably worse. All the
methods, other than PAM, are theoretically bounded
by the sampling resolution.

5 Conclusion

In this paper we propose a registration method for
in-plane rotation estimation of pharmaceutical tablets.
A feature based registration is performed, by con-
structing a reference feature set of rotated reference
images in mapped feature space. A rotation angle
of a sample is then estimated by finding its nearest-
neighbour in that reference set.

Method was evaluated and compared on four
datasets of pharmaceutical tablets. The results show
that the proposed method is a feasible option for rota-
tion estimation in industrial environments. Although
the evaluation was made on datasets of pharmaceuti-
cal tablets, we consider the method useful for rotation
estimation of arbitrary objects.
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[3] Ž. Špiclin, M. Bukovec, F. Pernuš, and B. Likar, “Im-
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