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Abstract

Histogram of orientated gradient (HOG) is widely
used as a local feature descriptor in bag of features
(BOF) method, whereas, few studies are conducted to
discover the relationship between them. In this paper,
we exploit this relationship and reveal that the con-
struction method of descriptor in blocks in HOG can
be treated as a variant of BOF method. Based on this
interpretation, we propose a new descriptor termed as
bag of gradient (BOG), which can be viewed as an ex-
tension of HOG, by incorporating principles used in
BOF, such as the preservation of locality. Experiment
results show that BOG significantly reduces the error
rate in comparison to HOG in pedestrian detection.

1 Introduction

Recent advances in the bag of features (BOF) ap-
proach have significantly contributed to the progress
of BOF-based image classification systems. These ad-
vances focus on the different phases of BOF, such as
the extraction of features [1], the coding of features
[2, 3], the pooling of features [4, 5], and the spatial
information preservation [6].
The histogram structure of the coefficient descrip-

tor over certain vocabulary generated by BOF is sim-
ilar to that of many local feature descriptors, such as
HOG [7] and SIFT [8]. This resemblance tempts us to
bridge those descriptors and BOF and leverage recent
advances in BOF. Nonetheless, few studies are con-
tributed to this work so far, and HOG and SIFT are
used merely as local feature descriptor in the feature
extraction phase of BOF.
In this paper, we build the relationship between

HOG and BOF by pointing out that the method used
to construct the descriptor of blocks in HOG is similar
to that used to construct the coefficient descriptor in
BOF. On the basis of this interpretation, we propose
an extended local feature descriptor of HOG, called
bag of gradient (BOG). As compared to HOG in the
experiment of pedestrian detection, our proposed de-
scriptor, which leverages the recent advances in BOF,
reduces the error rate from 19.22% to 7.98% when
FPPW = 10−3 (Fig. 1).
Because BOG extends HOG by combing principles

of BOF, it can be easily embedded into current frame-
works using HOG. Moreover, further advances in HOG
and BOF can be applied to boost the performance of
BOG.
The rest of this paper is organized as follows. In sec-

tion 2, we show how the method for constructing the
descriptor of blocks in HOG can be viewed as a vari-
ant of those used to construct the coefficient descriptor
in BOF. In Section 3, we introduce recent principles
proposed for BOF into the construction of descriptor

of blocks and propose a new local feature descriptor
termed as BOG. Section 4 shows experiments in pedes-
trian detection to evaluate the performance of BOG.
Section 5 gives the conclusion of this work.
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Figure 1. BOG remarkably reduces the error rate
in the pedestrian detection task in comparison
with HOG.

2 The relationship between HOG and BOF
in descriptor construction

In this section, we show how the method used to
construct the descriptor of blocks in HOG follows that
used in the construction of coefficient descriptor in
BOF.

2.1 Feature extraction

Let pi ∈ �
n denote a feature extracted from some

location, B ∈ �r×n a vocabulary with r visual words,
bj the j th visual word in this vocabulary. In this pa-
per, the feature is the gradient extracted from pixels,
therefore, n = 2. Let (pθi , p

m
i ) and (bθj , b

m
j ) denote the

orientation value and magnitude value of pi and bj re-
spectively. If we scale the range of orientation dimen-
sion and magnitude dimension into [0, π) and [0, L],
then pθi , b

θ
j ∈ [0, π) and pmi , bmj ∈ [0, L]. Let uij denote

the coefficient of pi to bj .
In HOG, the orientation value pθi of the gradient

of a pixel in the block is treated as the feature (n =
1) extracted from this pixel. The extraction of those
features is done densely for every pixel in this block.

2.2 The building of vocabulary

The vocabulary B in HOG is manually defined,
which differs from other BOF methods that create
the vocabulary by some clustering techniques such
as k-means to obtain data-driven vocabulary or by
dictionary-learning methods to obtain structured vo-
cabulary [9]. Visual words inB are defined to be evenly
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distributed along the orientation dimension. Hence, a
visual word bθj in B can be simply calculated by

bθj =
2j + 1

2r
π, j ∈ [0, r − 1]. (1)

Since these visual words are evenly distributed, the
distance between any two adjacent visual words is the
same. If we denote this distance as disθ, then disθ =
1

r
π.

2.3 The coding of features

The assignment of pθi of a pixel to its corresponding
bins in HOG is similar to the coding of pθi into visual
words bθj using the local soft-assignment scheme [4].

The local soft-assignment scheme assumes that pθi only
contributes to its locally nearest visual words. In HOG,
the number of these locally nearest visual words is set
to 2. Due to the even distribution of visual words, the
uij can be simply calculated as

uij =

{
1−

|pθ
i−bθj |

disθ
bθj ∈ b

N
pθ
i

0 bθj /∈ b
N
pθ
i

j ∈ [0, r − 1] (2)

where b
N
pθ
i
is the set of locally nearest visual words of

pθi .

2.4 The pooling of features

Max pooling is empirically asserted to have better
performance than sum pooling and average pooling
[10]. However, because in HOG a weight is required,
sum pooling is applied for all pθi to their corresponding
bθj with a weight wij , which is calculated as below.

wij = uij × pmi × si, (3)

Where si is calculated in terms of the location of the
pixel where pθi is extracted in the block (see section 3.2
for more details).

3 Introducing principles of BOF into HOG

In this section, we introduce principles proposed for
BOF into the construction of descriptor of blocks in
HOG. Those principles applied here are the preserva-
tion of locality, the data-driven vocabulary, and the
preservation of spatial information.

3.1 The preservation of locality

The preservation of locality of features helps to dis-
criminate features which are far away from each other
in feature space, this can be achieved by coding and
pooling the feature in the entire feature space.
In HOG, only the pθi is used as the feature and gra-

dients of close pθi while of divergent pmi are assigned to
the same visual word in the coding phase. Whereas,
gradients with different magnitudes usually carry dif-
ferent information which is useful for discrimination.
For instance, gradients in the edge usually have large
pmi while gradients of small pmi often come from back-
ground regions. In order to utilize this discriminative

Figure 2. The gradient space is evenly divided
into 6 regions (dashed rectangles) with Sθ = 3
and Sm = 2. The visual words (circles) are in
the center of each region. A feature (cross) is
assigned to its 4 nearest visual words (hollow cir-
cles).

information, we extend the feature space to the entire
gradient space by using pi as the feature rather than
merely pθi . This extension makes the coding and pool-
ing of features more smoothly and locally[5].

Following the operation in HOG, we manually define
B to be evenly distributed in the gradient space. This
amounts to dividing the gradient space into r regions
of identical area and the gradient in the center of each
region is a visual word of B as depicted in Fig. 2. Let
Sθ (Sm) denotes the number of regions that the ori-
entation dimension (magnitude dimension) is divided
into, bjk (j ∈ [0, Sθ−1], k ∈ [0, Sm−1]) a visual word.
Then, bjk = (bθjk, b

m
jk), and bθjk and bmjk are calculated

as below,

bθjk =
2j + 1

2Sθ

π, bmjk =
2k + 1

2Sm

L. (4)

Also the coefficient uijk is calculated as below,

uijk =

{
(1−

|pθ
i−bθjk |

disθ
)× (1−

|pm
i −bmjk |

dism
) bjk ∈ b

N
p

i

0 bjk /∈ b
N
p

i
,

(5)
where disθ and dism are the lengths of the region in
the orientation dimension and magnitude dimension
respectively. Since B is evenly distributed, the disθ
and dism of all regions are identical. We limit the
number of nearest visual words to 4 (see Fig. 2 for an
example).

We term this extended descriptor of HOG
BOG GRAD, where GRAD means using entire gra-
dient as feature.

3.2 The data-driven vocabulary

Manually defined vocabulary B is a generic vocab-
ulary, which fails to capture the distribution of the
local features. To incorporate this information, we use
the clustering technique k-means, as what conventional
BOF method does, to generate visual words for the vo-
cabulary.

We cluster pθi and pmi individually to get Sθ clus-
ter centers in the orientation dimension and Sm clus-
ter centers in the magnitude dimension, then combine
them together to build B. In this case, r = Sθ × Sm
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and the coefficient uijk is calculated as below,⎧⎪⎨
⎪⎩

uijk = e
−β|pθ

i
−bθ

jk
|−β|pm

i
−bm

jk
|∑

jk
e
−β|pθ

i
−bθ

jk
|−β|pm

i
−bm

jk
|

bjk ∈ b
N
p

i

0 bjk /∈ b
N
p

i
,

(6)
where β is a parameter adjusting the softness of the
exponential function.
We term this extended descriptor of BOG GRAD

BOG GRAD DV, where DV means data-driven vocab-
ulary. Unlike BOG GRAD, which uses the same vo-
cabulary for all blocks, each block in BOG GRAD DV
has its own vocabulary generated by k-means.

3.3 The preservation of spatial information

Figure 3. An example of spatial pyramid of T =
3.

The spatial information of the feature works as an
important role in discriminating the class of this fea-
ture with other classes. The spatial pyramid matching
technique introduced in [6] significantly mines this in-
formation and boost the performance of BOF method.
In HOG, this spatial information is also exploited by
dividing the block into 4 cells, extracting the descrip-
tor from each cell and then concatenating these 4 cell
descriptors to form the block descriptor. As well as
this, a weight si for p

θ
i (or pi in BOG), which is calcu-

lated based on the distance between the pixel where pθi
is extracted and the center of the block, along with the
distance between this pixel and the centers of 4 cells, is
used to further record the location information of pθi .
Motivated by SPM, we extract the block descriptor

from a spatial pyramid of the block. A spatial pyramid
has T layers and each layer is a copy of the block. The
tth (t ∈ [1, T ]) layer is divided into 4T−t cells (Fig. 3
gives an example of spatial pyramid of T = 3.). Cell
descriptors are concatenated into layer descriptors and
layer descriptors are finally concatenated into block de-
scriptors. The method used in HOG dividing block
into 4 cells can be viewed as a simplified version of
this method. This spatial pyramid extraction scheme
is applied on the block, and thus is different from the
multi-level HOG defined in [11], which applies the spa-
tial pyramid extraction for the whole image. Moreover,
the spatial weight si is removed from multi-level HOG.
We call this extended descriptor of BOG GRAD DV

using spatial pyramid extraction BOG.

4 Experiment

We performed three experiments in pedestrian de-
tection task to evaluate the performance of BOG. Ex-
periment 1 compares the performance of BOG GRAD
with that of HOG and examine how its performance is
affected by different values of Sm. Experiment 2 com-
pares the performance of BOG GRAD DV with that of

BOG GRAD. Experiment 3 compares the performance
of BOG with that of BOG GRAD DV and examines
the impact of different T to the performance of BOG.

4.1 Dataset

Figure 4. Some examples of image from the train-
ing and testing dataset.

We used the INRIA pedestrian dataset [7] to con-
duct the evaluation experiments. The positive and
negative training dataset all contain 1000 images of
size 64×128, which are generated by cropping positive
and negative images of INRIA for training. The posi-
tive testing dataset contains 476 positive images with
their reflections of size 64×128. We randomly selected
45300 patches of size 64×128 from negative images for
testing in INRIA to form the negative testing dataset.
Several examples of image from these datasets are dis-
played in Fig. 4.

4.2 Setting the parameters

For both HOG and BOG, the block size is set to
16×16. Unless otherwise noted, we use Sa = 9, Sm =
3, T = 2 and β = 10. Moreover, for both HOG and
BOG, we used the L2-norm normalization rule H =
H/

√
‖H‖2 + ε, where ε is a regulating parameter and

is fixed to 10−3 in this paper. For HOG, H is the
block descriptor, for BOG, H is the layer descriptor.
For purpose of capturing the discriminant information
of the pedestrian, the clustering is performed merely
on positive training dataset.
We trained the linear SVM classifier using Libsvm

[12] for both HOG and BOG.
Experimental results are depicted in the detection

error tradeoff (DET) curve, where the horizontal axis
displays the logarithmic value of the false positives
per window (FPPW) and the vertical axis displays
the logarithmic value of the corresponding error rate
( false negative

true negtive+false positive
).

4.3 Experiment 1

In this experiment, we used Sm = 2, 3, 4 and com-
pared the performances of them with HOG. The result
is shown in Fig.5. The performance of BOG GRAD is
comparative to HOG when Sm = 2. With Sm increas-
ing to 3 and 4, the performance of BOG comes to excel
HOG. Although the performance is continually raised
when Sm steps from 3 to 4, this promotion is not as
significant as when Sm rises from 2 to 3.

4.4 Experiment 2

In this experiment, we compared the performance
of BOG GRAD, which uses manually defined vocabu-
lary, with BOG GRAD DV using data-driven vocab-
ulary generated by k-means. The result is shown in
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Figure 5. Result of experiment 1.
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Figure 6. Result of experiment 2.

Fig.6. The performance of BOG GRAD DV continues
to reduce the error rate in contrast to BOG GRAD.
This result consists with many experimental results of
BOF method. Whereas, unlike typical BOF method,
in which different classes explicitly have different clus-
ter centers, the cluster centers of pedestrian may not
diverge largely from those of the background, which
makes the improvement of detection accuracy not quite
significant in this experiment.

4.5 Experiment 3
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Figure 7. Result of experiment 3.

In this experiment, we used T = 1, 2, 3

and compared the performances of them with
BOG GRAD DV. The result is shown in Fig.7. The
usage of spatial pyramid extraction successfully ex-
ploits the spatial information of features and improve
the performance of BOG GRAD DV. It seems like the
adoption of T = 2 is sufficient to extract this spatial
information. By increasing T from 2 to 3, the perfor-
mance conversely becomes worse. This deterioration
is probably caused by the excessively fine division of
the block into cells, which brings in redundant spatial
information. Therefore, for block of certain size, it is
necessary to conduct some experiments to select the
suitable value of T .

5 Conclusion

We studied the relationship between HOG and BOF
and showed that approach used to construct the block
descriptor in HOG is similar to that used to build
the coefficient descriptor in BOF method. Enlightened
by this interpretation, we proposed a new descriptor,
called BOG, which is a generalized version of HOG by
embedding principles of BOF into HOG. The experi-
mental results in pedestrian detection confirmed that
BOG is more robust than HOG in capturing the dis-
criminant information. Although this study is based
on HOG, it is possible to be extended to the learning
of other HOG-like local feature descriptors’ relation
with BOF and leverage advances of each other.

References

[1] Y-Lan Boureau, et al.: ”Learning mid-level features
for recognition” CVPR, pp.2559–2566, 2010.

[2] Wright John, et al.: ”Robust Face Recognition via
Sparse Representation” IEEE Trans. Pattern Anal.

Mach. Intell., vol.31, nu.2, pp.210–227, 2009.
[3] Jinjun Wang, et al.: ”Locality-constrained linear cod-

ing for image classification” CVPR, 2010.
[4] Lingqiao Liu, et al.: ”In defense of soft-assignment

coding” ICCV, pp.2486–2493, 2011.
[5] Y-Lan Boureau, et al.: ”Ask the locals: multi-way

local pooling for image recognition” ICCV, 2011.
[6] Svetlana Lazebnik, et al.: ”Beyond Bags of Features:

Spatial Pyramid Matching for Recognizing Natural
Scene Categories” CVPR, vol.2, pp.2169–2178, 2006.

[7] Navneet Dalal, et al.: ”Histograms of Oriented Gradi-
ents for Human Detection” CVPR, PP.886–893, 2005.

[8] David G Lowe, et al.: ”Distinctive Image Features
from Scale-Invariant Keypoints” Int. J. Comput. Vi-

sion, vol.60, nu.2, pp.91–110, 2004.
[9] Meng Yang, et al.: ”Fisher Discrimination Dictionary

Learning for sparse representation” ICCV, pp.543–550,
2011.

[10] Jianchao Yang, et al.: ”Linear spatial pyramid match-
ing using sparse coding for image classification” CVPR,
vol.0, pp.1794–1801, 2009.

[11] Subhransu Maji, et al.: ”Classification using intersec-
tion kernel support vector machines is efficient” CVPR,
2008.

[12] Chang, Chih-Chung, et al.: ”LIBSVM: A library for
support vector machines” ACM Transactions on In-

telligent Systems and Technology, vol.2, pp.27:1–27:27,
2011.

418


