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Abstract 

Multi-illumination training images are usually used in 
robust face recognition against light variation.Usually a 
large number of training images are taken under 
sophisticated imaging system. There definitely exists a 
large amount of redundancy in these images. Can we 
pick out several representative samples from them as 
training images instead of using the whole set? Or even, 
can we find a better scheme for putting lights when 
taking or synthesizing these training images? In this 
paper we propose a method wherewe study the degree of 
linear independency of face images under different 
illuminations, and prove that images with different linear 
independency has different contribution in spanning the 
illumination subspace.A relatively good combination of 
images with different linear independency is proposed 
after analysis and experiments. It also brings forward 
guidance for light control in obtaining training images. 

1. Introduction 

Illumination model is widely used to handle the 
problem of lighting variation in face recognition. The 
strongest theoretical results so far are due to the Basri 
and Jacobs [1].The result in the paper is that, for convex 
Lambertian objects, distant illuminations and fixed pose, 
all images of the object can be well approximated by 
linear combinations of nine basis images. But the nine 
basic images are not real images as some of the pixel 
values are negative [2], because as specified by the 
spherical harmonic functions, the nine “harmonic lights” 
are not real lighting conditions, as for some directions, 
the intensity is negative. Also, the direct application of 
this result in most practical systems is misguided for 
several reasons [5]. Specularities, self-shadowing, and 
inter-reflections all dramatically affect the appearance of 
face images, and they all do so in a way that violates the 
modeling assumptions of the Basri analysis. 

Fortunately, even with these effects, for most materials, 
the relationship between illumination and image is still 
linear [5] (provided the sensor has a linear response 
curve), so only positive weights are allowed. As in [7] 
the space of all images of an object with fixed pose and 
varying illumination is a convex cone lying in the 
positive orthant. So, what kind of images does it take to 
do a good job of representing images sampled from this 
cone, and when a set of images taken under arbitrary 
lights are given, how can we choose a most typical 

subset from them that can represent the illuminations 
well?  

Inmuch previous work, sophisticated imaging systems 
are designed [3,5,6], and sometimesonly the images 
illuminated from directions above horizontal are tested in 
face recognition [2-4]. In [8] the sparse representation 
and classification (SRC) algorithm achieved impressive 
results even when the test images may haveilluminations 
from the back. Such as its experiments on Yale B 
database, in which each individual has 32 images 
(selected at random) as training and the other 32 for 
testing. Obviously there may exists redundancy in the 32 
training images. The work is extended in [5], in which 38 
training images are taken under lights at evenly spaced 
spots in a certain angle range, but it doesn’t mean every 
image makes equal contribution for the recognition.  

To eliminate redundancy and to find the most 
representative light directions of training images, we 
proposed to investigate the linear independency of 
images under various illuminations. And we research 
different ways of choosing training images according to 
their degree of linear independency. Through analysis 
and experiments, we conclude a guidance advice for 
effectively picking or obtaining training images. 

2. Linear independency of images under 
various illuminations 

Suppose 1 2{ , , ..., }nS I I I�  is a database of multiple 
registered training images per subject,taken under 
varying illuminations. ix is the vector form of iI
( 1, 2,...,i n� ). We let iR  donate the set obtained by 

deleting iI  from S .and iD  denote the degree of 

independency of iI  

( , )i i iD dist x R�             (1) 
Where the distance function dist  between a 

vector x  and a linear subspace R  is defined as  

1
( , ) Tdist x R x P �� � �          (2) 

In which 1 2[ , ,... ]sP r r r�  is the basis of R , which 

is got from PCA decomposition, and 1 2[ , ,... ]s� � � ��  

is the projection coefficient of x  in iR . 

So we can sort the images in S  according to iD , to 
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get their relative degree of linear independency. That 
will be performed in detail in Section 4. 

3. Choosing training image in 
SRCalgorithm 

SRC algorithm has got amazingly high recognition 
rate in multi-illumination test images [7]. It assumes 
access to a group of training sets { 1 2, ,..., KS S S }of K
subjects. The images of subject j ( 1, 2, ...j K� ), stacked 

as vectors, form a matrix jm n
jA R �� . Taken together, 

all the images form a large matrix 

1 2[ | | ... | ] m N
KA A A A R �� � ( 1 2 ... KN n n n� � � � ), 

a well aligned test image 0y can be represented as 

sparse linear combination 0Ax  of all images in the 

databases. So when A is huge, the computation is 
heavy and the algorithm takes a large amount of time. 
Suppose for each subject, we are reducing the number of 
training images from N  to T  (T N	 ). We sort the 

jn  images of subject j  in ascending order according 
to their degree of linear independency 

1 2{ , ,... }
j

sort sort sort
j j j jnS I I I�           (3) 

 Then we divide them into k groups, each with p  

images ( jk p n
 � ). 

1 1 2 ,

2 , 1 , 2 ,2*

,( 1) 1 ,( 1) 2 , *

{ , ,... }

{ , ,... }

...
{ , ,... }

sort sort sort
j j j j p

sort sort sort
j j p j p j p

sort sort sort
jk j k p j k p j k p

g I I I

g I I I

g I I I

� �

� � � �

�

�

�

     (4) 

So 1 2{ , ,..., }j j j jkS g g g� .When we pick jt  images 

from jn , we distribute the k groups different 

proportions 1 2{ , ,... }kR r r r� ( 1 2 ... 1kr r r�� � � ,

1 2 ...,, , 0kr r r � ).In next chapter we can learn that, by 
adjusting the distribution of R , the images with different 
degree of linear independency have different importance. 

4. Experiments 

We test our method on Yale B face database. Images 
in Yale B are obtained from 38 individuals, captured 
under 64 different lighting conditions. 

4.1. Linear independency of images 
We calculate the degree of independency of the 

images as in equation (1), andsort the images of each 
individual in ascending order according to the calculated 
linear independency. Fig. 1 is an example of the sorting 
of the whole 64 images of one individual. We can 
see,theorder is roughly from “good” lights (frontal and 

uniform) to “bad” lights (with shadows or specularities).  
It can be explained that, when all the images are taken 

from the same person with the same pose, which means 
the shape and albedo of the surface are fixed, according 
to the lambertian model [9], the linear relationship is 
decided by the illuminations of the images. The rays 
around the frontal direction lie in a small volume in the 
middle of the illumination cone, they constitute good 
linear combination for each other, so the reconstruction 
error is relatively small. While, the collections of images 
that are produced by extreme lighting conditions 
(lighting from the sides, up/down, or behind) spread to 
the lateral area of the illumination, and more extremely, 
as the last ten images in Figure.1, the sets of pixels 
illuminated in each image are mutually disjoint. 
Therefore, they will produce the maximal possible value 
of ( , )i idist x R . 
 

 

4.2. Choosing training images for recognition 

Figure 1. 64 illuminations sorted in ascending order 
according to the calculated degree of linear 
independency. 
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maximum and minimum values of recognition rates of 
every scheme. And in Figure. 4, the average value is 
shown as curves. 

We can see that when T decreases from 32 to 16, the 
recognition goes down much lower than that of random 
picking. So if certain error is allowed, it’s possible to use 
smaller scale of training image set with our method. 
Furthermore, if we have the condition to take images in 
fixed direction, or generate images from 3D face, we 
don’t have to take or generate a large scale of training 
images, or let the light direction be equally spaced. We 
just need a few directions concentrated in the frontal area 
and the next directions spread quasi-uniformly to the 
lateral area. According to the discussion in the previous 
paragraphs, that’s the most effective distribution for 
robust recognition. 

 

Table 1.Maximum and minimum of recognition rates 

T Our method Random picking
max min max min

16 96.10% 94.94% 93.49% 92.66%
20 98.08% 97.33% 96.10% 95.50%
24 98.30% 97.96% 96.74% 96.51%
28 98.75% 98.32% 97.83% 98.00%
32  98.75% 98.01%

 

 

 

5. Conclusion 

In this paper, we proposed a method to learn the linear 
independency of images under various illuminations, and 
discussed the relationship between the degree of linear 
independency and the light condition of images.And we 
also learned different distributions of images with 
various degree of linear independency have different 
recognition effects. 

From the bad performance of choosing rays clustered 
around the direct frontal direction, we are reminded that 
the traditional methods where only a single frontal 
gallery image is available per individual, are sensitive for 
light varying. Multi-illumination gallery images are 

robust for light changing, while it brings increase in 
computation. For this situation, we demonstrate that the 
combination of a few frontal lighted images with more 
side-lighted ones is an effective way that can get equally 
good recognition performance with fewer training 
images. And it’s also a valuable advice for taking 
training image with particular system or generating from 
3D face. 

While one limitation of our experiments is that, we 
didn’t control thedirection of images when picking them 
from original training set. That may cause instability in 
small scale of chosen training set. If we roughly estimate 
the light direction of each image when picking them, or 
take/generate training images from fixed directions, we 
can distribute the ratios of rays’ angle sizes, so it’s 
possible that very small scale of training images are 
enough for good performance in face recognition. 

This work is supported by the National Natural 
Science Foundation of China (grant no. 61101152) and 
the Chuanxin Foundation from Tsinghua University 
(grant no. 110107001). 
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Figure.4. Comparison with randomly picked training 
set.The size of training set T varies from 16 to 32. The 
upper curve is the result of our method, and the lower 
on is that of random picking.
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