10-2

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN

Multi Spatio-temporal Co-occurrence Measures for Human
Action Classification

A. Q. Md Sabri'?, J. Boonaert!, S. Lecoeuche! and E. Mouaddib?
"Mines Douai, Computer Science and Automatic Control Research Unit
764 Boulevard Lahure, Douai, France
2Université de Picardie Jules Verne, Modeling, Information and System Laboratory,
Faculty of Science, 33, rue Saint Leu, 80039 Amiens Cedex 1, France

Abstract

This paper deals with human action classification by
utilizing spatio-temporal (ST) co-occurrences between
labels of video-words that are stored within ST correlo-
grams. Mutual information based clustering method is
employed to reduce the size of the vocabulary created
from local descriptors. Multiple characterizations for
human actions in videos are extracted from the correl-
ograms that are used for human action classification.
These include a highly discriminative co-occurrence
vector and a Haralick texture vector. The proposed
method is implemented using a SVM classification
technique. For evaluation purposes, the KTH and UCF
Sports action recognition datasets, are used as they are
the most well known and challenging datasets. The
proposed method succeed in classifying different action
classes, and improves the classification rate obtained
by standard bag-of-video-words approach.

1 Introduction

Primary goal of our work is to improve the works
of Savarese et al. [1] and our previous work [2], which
utilize local based spatio-temporal co-occurrence tech-
nique. These works attempt to improve the standard
bag-of-video-words (BoVW) model [3] used to charac-
terize human actions. In recent years, mutual infor-
mation (MI) has been successfully employed to com-
press the vocabulary of video-words for human action
classification, [4], [5]. Motivated by this, we decide to
incorporate MI based video-words selection into our
proposed approach.

Savarese et al. [1] introduced vector-quantized
representation of ST correlograms that describe co-
occurrences of video-words within spatio-temporal
neighborhoods. In [2], we highlighted that usage of
a discriminative type of descriptor affects the overall
ST texture which is represented by the ST correlo-
gram. Thus, previously, we had chosen to use SURF
based descriptor in replacement of the brightness gra-
dient descriptors used by Savarese et al. [1]. This
enhances the classification rate since the characteriza-
tions for actions contained in the different videos are
better represented.

However, the main challenge in improving the works
of Savarese et al. is that the information regarding the
video-words labels that generate the co-occurrences is
lost during vector quantization. Therefore, we propose
to directly extract meaningful information from the ST
correlogram without the usage of vector quantization.

Firstly, we propose a novel type of characterization
for human actions by extracting a set of Haralick tex-
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ture measures [6] from the ST correlograms. In im-
age classification, texture measures are extracted from
a distribution of pixel intensities in an image repre-
sented by a co-occurrence matrix [6]. In our work, sim-
ilar texture measures are used to represent distinctive
ST texture variations between different action classes.
Secondly, another type of representation is obtained by
reducing the dimensionality of the ST correlograms us-
ing PCA. Each of the ST correlogram is projected into
a PCA subspace that reduces the number of its di-
mensions, preserving the important information. This
in turn is used to characterize human actions.

Both the KTH [7] and the challenging UCF sports
[8] datasets which are standard benchmarks for this
area are used to evaluate our approach. Our proposed
method succeed in classifying different action classes,
and achieve near state of the arts performance.

2 Proposed Approach

Figure 1 and figure 2 depicts the global flow of our
proposed approach for generating characterizations of
human actions from an initial set of videos containing

actlons such as walking, jogging and hand-clapping.
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2.1 Vocabulary of Video-Words

This section highlights the formation of video-words
for the purpose of representing a video using the BoVW
approach. BoVW approach starts with the detection
of ST interest points (STIP) and its corresponding de-
scriptors. STIP constitutes most salient areas in a
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video indicating motion, and a descriptor is a patch
surrounding the STIP that stores motion information.

Wang et al. [9] in their survey noted that the per-
formance of local features are dataset dependent. In
our work, we have chosen to use the Harris3D STIP
detector with Histogram of Oriented Gradient (HOG)
concatenated with Histogram of flow (HOF) [10] for
both the KTH and UCF dataset. The implementation
of these methods are available on the author’s website!,
and default parameters are utilized in our experiments.
We avoid dense sampling since, although it is effective
in modeling cluttered scenes, it involves high computa-
tional cost as the number of STIP detected is often at
least 10-20 times larger than sparse based STIP such
as the Harris3D detector.

A video-word can then be considered as a repre-
sentative of several similar patches. This is done by
performing k-means clustering over the set of local de-
scriptors. Video-words are then defined as the centers
of the learned clusters. Thus, each patch in a video is
mapped to a certain video-word through the clustering
process and the video can be represented by the his-
togram of the video-words. This histogram is what we
refer as BoVW representation of the video.

In brief, having n number of STIP detected, each
interest point is mapped to its corresponding local de-

scriptor,
P P:{plap27"'pn};D:{d17d2,...7dn}

DESC:P+—D 1

Therefore, given a set of descriptors, D, extracted
across a set of videos, K-means clustering is performed
to partition the extracted descriptors into K number of
clusters denoted by, A. The cluster centers are repre-
sentative of the descriptors that are most prominent to
describe and to discriminate these videos which con-
tain different action classes such as running, walking
and jogging. KmeansWord : D — A;

dl‘ — }\,j;
je{l,..,Khie{l,..,n;;K<n (2)

A set of video-words is then defined as the cen-
ters of these clusters. This set is denoted by A =
{M, A2, .., Ak }. A label, [, for a video-word in this con-
text refers to the index value associated with the video
word (i.e. for A3 , [ is then equal to 3) , whereby [ < K.

2.2 Bag-of-video-words

Following the formation of a set of video-words A,
and the extracted set of STIP, P, along with its corre-
sponding set of local descriptors, D, each of the inter-
est point is first labeled with the label I, of its nearest
video-word. This is done by computing the Euclidean
distance between the descriptor (associated with each
interest point) D, and the stored video-words A.

Label : P —> Piaveied

pi — li 5 I; = argmin(dist (d;,\}));
J

jell, . Kyie{l,...n}

Frequency of video-words labels in a video is stored
in a histogram used to characterize human action.
This characterization will be jointly used with the the
characterizations extracted using ST co-occurrence be-
tween the video-words labels.

3)

Uhttp://www.di.ens.ft/ laptev/download.html
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2.3 Video-Words Selection

Often in BoVW characterization, a large number
of video-words are extracted to generalize the dataset
containing different actions. However, as our approach
utilizes the co-occurrence between video-words labels,
it is more desirable to have a subset of the initial vo-
cabulary that preserves the initial classification rate to
be used for implementing the ST co-occurrence tech-
nique.

To compress the size of initial vocabulary, we have
adopted the approach presented by Liu et al. [4]
for video-words selection based on mutual information
(MI) between the video-words, A and the different ac-
tion classes, Y.

In our implementation, utilizing the initial dictio-
nary A obtained from K-means clustering, at each it-
eration, MI loss is computed for every pair of video-
words, A; and A. The merging criteria is the pair that
generates minimal MI loss. The merging process is con-
tinued until we reach the desired dictionary size, K*.
In our case, this is often to be between 20-40 percent
of the original size of the vocabulary, and is selected
based on the value of K* that produces optimal clas-
sification rate. For more details on theoretical details
behind the MI based video-words selection, we refer
the reader to the works of Liu et al. [4]. After per-
forming the video-words selection on A, we will obtain

~

a reduced set of vocabulary, A.

2.4 Construction of ST Correlogram and Ex-
traction of ST Co-occurrence based charac-
terizations

This section follows the notation and the works of
Savarese et al [1] in generating the ST correlograms.
From these correlograms we extract multiple ST co-
occurrence based characterizations. These includes the
Haralick texture vector and ST co-occurrence vector.
Both types of characterization will be jointly used with
the BoVW approach to characterize human actions.
The set of vocabulary (i.e. video-words) referred in
the following sections, unless specified, refers to the
reduced set which is A.

2.4.1 Spatio-temporal Correlograms

Following the formation of a reduced set of video-
words A, similar to the BoVW approach, the extracted
set of STIP, P, along with its corresponding set of local
descriptors, D, each of the interest point is first labeled
with the label of its nearest video-word, A.

At this point, we have a distribution of labeled STIP.
For each of the video from the set of videos contain-
ing different action classes, a local histogram H(II, p)
is defined as a vector function that captures the num-
ber of interest points with the same label, [, within a
spatio-temporal kernel I1, centered on p.

For each interest point location, p, a set of J kernels
centered on p with different sizes is considered. This
idea is taken from [1] and uses kernel type (rectangu-
lar volume) that extends between 2-40 pixels along the
spatial dimension and 2-60 frames in the temporal do-
main. The " kernel of this set is denoted as I1,. For
concrete discussion on kernel construction and exper-
iments related to kernel sizes, we refer readers to the
original work by [1].



Table 1: Different Characterizations for Human Actions

Haralick Texture Measures ST Co-occurrence

vector

Bag-of-video-words

Histogram of Energy Dimensionally
occurrences of Correlation reduced ST
video-words Inertia correlogram
labels Entropy vector

Inverse Different Moment
Sum Average

Sum Variance

Sum Entropy

Difference Average

Difference Variance
Difference Entropy

Info. Measure of Correlationl
Info. Measure of Correlation2

The average local histogram is defined as

H(Hrap)

I<r<J;1<I<K"
|P)|

A, =Y

PEP

“4)

where P; indicates the set of interest points with label
I, and |Py| refers to its cardinality. A correlogram, x,
for a particular video, Vidx, is built by concatenating
in an array such local histograms for all combinations
of labels and kernels.
H(IT;,1) H(I,,K*)

X =

®)

I:I(H.Ial) I:I(HlaK*)

2.4.2 Haralick Texture Measures

Haralick introduced different measures to extract
texture information from 2D images. Details concern-
ing the formula for the different measures can be re-
ferred to the original paper [6]. We consider the usage
of Haralick texture measures based on the distribution
of labeled video-words. Specifically, we wish to ex-
tract spatio-temporal texture information of different
action classes, that is embedded within the distribution
of the labeled video-words from each video containing
a particular action. We utilized 13 different types of
Haralick measures that are presented in Table 1.

Building blocks of a ST correlogram are local his-
tograms of differing kernel sizes. Observing a particu-
lar kernel index, j, we can define xrj;, which is essen-
tially a co-occurrence matrix for all pairs of labels for
a specific kernel size. More specifically, if we refer to
row components of the previous definition from (5), we
can define xr; as

xnj:[I:](Hj,l),...,ﬂ(Hj,K*)];j§J (6)

We then proceed by extracting Haralick texture
measures from each xr;. We can then define a map-
ping from a correlogram, x to its corresponding Haral-
ick texture vector, B

Haralick : x — B
XI1j > Bm
jed{l, ..., Jhme{l,.., 13} @)

The Haralick texture vector, B, which is of the size
13 x J, is formed by concatenating each B, extracted
from each xrj; into a single vector.

This, along with other characterization types dis-
cussed can be used in combination (through vector
concatenation) or separately to represent and charac-
terize each video sequence.In our case, a naive imple-
mentation of the computation of the Haralick texture
measures was performed, and therefore the maximal
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computational complexity as referred to [11] for a set
of Haralick texture measures given a ST correlogram, is
of the order O(f?), with f being the number of nonzero
elements in each of the ST correlogram. However, as
proposed by [11], there are methods to improve the
efficiency of the computation of this measures.

2.4.3 Construction of ST Co-occurrence vector

In this section, we explain how we convert the ST
correlogram into its corresponding ST co-occurrence
vector. The goal of this approach is to avoid vector
quantization that favors loss of information between
the co-occurrences of video-words labels. At this point
we have a set of ST correlograms extracted from a set of
videos containing different actions, X = {xj,x2,...xp},
with M being the number of videos in a particular
dataset.

A single ST correlogram is made up of i=K XK X J
single-elements. Each correlogram, x; is first trans-
formed into a 1-d vector,f; , by concatenating all the
rows of the ST correlogram into a single row.

Given a collection of these 1-D vectors, X =
{%1,%,...,x1}, we proceed by performing PCA to re-
duce the dimensionality of each &;. In our work, this
is done by fixing the number of principal components,
S, and by projecting each elements of X onto a new
orthogonal basis, creating a new set of dimension-
ally reduced vectors, Z. This approach aims to re-
duce the number of dimensions while preserving the
main information (i.e co-occurrences between video-
words labels). The projected vectors, are smaller in
dimension and contains essential video-words labels co-
occurrences information that can be used to character-
ize human actions. The maximum value for S in our
case is the number of training data used to compute
the PCA values, and is equivalent to M.

The order of complexity to perform PCA on each
of %;, is of order O(AD?). The complexity is depen-
dent on the size and dimension, D, of £;. Future works
include the usage of kernel-PCA [12], in which PCA
will be computed on the kernel values, removing this

dependency. PCA-X —s 7
Xi =2

ie{l,.,ahie{l,.,ShS<n ®)

3 Experimental Results

In this section we will detail experimental results uti-
lizing the different characterization methods discussed
earlier for two distinct and highly challenging datasets,
the KTH and UCF sports dataset.

3.1 KTH Dataset

The KTH dataset [7] contains 6 types of actions.
There are 599 low-resolution (160 x 120) video files
from a combination of 25 subjects, 6 actions and 4
scenarios taken indoor and outdoor. In our experi-
ments, we followed the original experimental setup of
the authors [7]. The dataset is divided into a test set
(9 subjects), and training set (16 subjects). The ini-
tial size of the vocabulary, A used to create the BoVW
histogram vector is 1000, in which we obtained 90.74
classification rate.

A of size 180 is created using the video-words selec-
tion method discussed earlier in which we preserved
88.89% classification rate. A is used to build the cor-



relogram from which Haralick texture vectors (Hara)
and ST co-occurrence vectors (BOK) are extracted.
These vectors are used to characterize different actions
contained in training and testing set. For each of the
training video, using one or the combination between
the different type of vectors, along with its known ac-
tion class, we train a supervised SVM classifier [12].
Table 2 denotes the results on the KTH dataset.

It is interesting to note that the usage of ST co-
ocurrence vector alone (90.28%) is able to challenge the
BoVW characterization (90.74%). Our approach pro-
pose the combination of all characterizations, in which
we obtain a classification rate of 92.13% which is inline
with the current state-of-the arts results reported on
the KTH dataset, ([4], 93.43 %).

Table 2: Results for the KTH dataset

Action/ | BoVW (%) | BOK(%) | Hara(%) | Combined
Charac. (%)
Box 100.00 100.00 88.89 100.00
Clap 97.22 100.00 58.33 97.22
Wave 91.67 97.22 77.78 91.67
Jog 83.33 80.56 30.56 91.67
Run 72.22 63.89 52.78 72.22
Wave 100.00 100.00 63.89 100.00
Avg. 90.74 90.28 62.04 92.13

4 UCF Sports Dataset

The UCF sports dataset is a collection of 150 broad-
cast sports videos and contains 10 different actions. It
is a highly challenging dataset with large variations in
terms of scenes and viewpoints. In our experiments,
we adopted the experimental setup utilized by [5] that
utilizes a 5-fold-cross-validation setup. The initial size
of the vocabulary, A used to create the BoVW his-
togram vector is 1000, in which we obtained 73.17%
classification rate. A of size 300 is then created us-
ing the video-words selection method discussed earlier
in which we preserved 60.05% classification rate. A
is used to build the correlogram from which Haralick
texture vectors (Hara) and ST co-occurrence vectors
(BOK) are extracted. These vectors are used individ-
ually or in combination, along with its known action
class, to train a supervised SVM classifier [12].

Results in Table 3 demonstrates that we continue to
see the trend in which our proposed approach of ST
co-occurrence technique improves the BoVW charac-
terization method. The combination of all the vectors
achieve 75.68% classification rate. Typically, works
that achieve >80% classification employs a more ad-
vanced and computationally expensive type of descrip-
tors as reported by [5] that uses global features and [9]
that uses dense sampling in their survey. We on the
other hand utilizes sparse STIP and is able to obtain
near 80% classification rate. This is more practical for
a real-time application which is often the case in hu-
man action classification. Noticeable classification in-
crease is achieved in “Dive”” and “Kick”’ action classes,
achieving between 7-20 percent jump classification in-
crease. “Skate” continues to be a problematic action
class, due to the fact of the sparse STIP used is not
able detect distinctive region of interest. Using a more
advanced type of STIP detector will solve this problem.

4.1 Conclusion and Future Works

In our work, we proposed the usage of a feature se-
lection method to increase the efficiency in the cre-
ation of ST correlograms. We also proposed 2 types
of ST co-occurrence based characterizations that when
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Table 3: Results for the UCF sports dataset

Action/ BoVW (%) | BOK(%) | Hara(%) | Combined
Charac. (%)

Dive 85.71 100.00 64.29 92.86
Golf 61.11 38.89 0.00 61.11
Kick 75.00 55.00 85.00 95.00
Lift 100.00 100.00 33.33 100.00
Ride 66.67 58.33 8.33 66.67
Run 76.92 53.85 15.38 76.92
Skate 33.33 0.00 33.33 25.00
Swg-bench 85.00 70.00 55.00 85.00
Swg-side 76.92 61.54 30.77 76.92
‘Walk 77.27 72.73 77.27 77.27
Average 73.79 61.03 40.27 75.68

used in combination with the BoVW characterization
approach, obtained a near state-of-the arts classifica-
tion rate despite using a sparse STIP detector. Future
works include identifying individual effect of the differ-
ent types of Haralick texture measures on the perfor-
mance of the proposed approach.
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