
Video-Based Head Tracking for High-Performance Games

Andrei Sherstyuk
Sunflower Research

andrei.sherstyuk@gmail.com

Anton Treskunov
Samsung

anton.t@sisa.samsung.com

Vladimir Savchenko
Hosei University

vsavchen@k.hosei.ac.jp

Abstract

The recent advent of video-based tracking technolo-
gies allowed to bring natural head motion to any 3D
application, including games. However, video tracking
is a CPU-intensive process, which may have a negative
impact on game performance. In this work, we exam-
ine this impact for different types of 3D content, using
a game prototype built with two advanced components,
CryENGINE2 platform and faceAPI head tracking sys-
tem. Our findings indicate that cost of video tracking
is negligible. We provide detail on our system imple-
mentation and performance analysis. Also, we present
a number of new techniques of controlling user avatars
in social 3D games, based on head motion.

1 Introduction

Bringing natural human motion into virtual environ-
ments involves balancing between hardware cost, the
tracking range and the fidelity of the motion data. For
example, both Sony EyeToy and Microsoft Kinect sys-
tems are capable of full body tracking. However, Sony
EyeToy, which is ten times less expensive, is designed
for processing wide motions and gestures and lacks pre-
cision needed for tracking subtle head movements.
Until recently, reliable tracking of head motion re-

quired special hardware: accelerometers, magnetic or
optical trackers. For certain systems, per-user calibra-
tion or special operating conditions were also needed.
Yet, use of natural head motion was widely regarded
as the future of games [1].
New webcam-based tracking technologies deliver

high-quality motion data on consumer hardware, prac-
tically on every desktop. That, in turn, allows to inte-
grate natural head motion into 3D games easily. How-
ever, most modern game engines are computationally
demanding, often pushing host systems to their limits,
both for CPU and GPU tasks. Will head tracking still
be useful in such extreme conditions?

1.1 Goals and Methods

In this project, we investigate whether single-camera
head tracking is practical and computationally afford-
able for modern games. We approach this problem by
building and testing a game prototype, integrating a
high-end photorealistic game platform CryENGINE2
from Crytek [2] with a state-of-the-art faceAPI head
tracking software from Seeing Machines [3]. Both sys-
tems are briefly described below.

1.2 The System Components

CryENGINE2 made its debut with Crysis game,
which set new standards of visual quality for first per-
son shooters. CryENGINE2 was used to build Blue
Mars Online 3D world [5], featuring photo-realistic
avatars, with dynamically simulated hair and layers

of cloth. CryENGINE2 was also used by creators of
Entropia Universe adventure game, which holds the
record of hosting the most expensive piece of virtual
estate ever purchased with real money.
FaceAPI tracking engine was released to public in

2010. This system generates high-quality head mo-
tion data with 6 degrees of freedom at 30 Hz, from a
single web camera. Presently, faceAPI is available for
Windows OS; the forthcoming release will also have
support for Linux and Mac OS. A public license pro-
vides head rotation and orientation data; a commer-
cial version will also track position of facial features,
such as eyes, mouth and eyebrows. Detailed technical
specifications of faceAPI engine are available at the
manufacturer’s web-site [4].

2 Previous Work

Since it release, faceAPI was rapidly gaining recog-
nition in research community. It was used in stud-
ies on estimating gaze direction from eye appearance,
with free user head rotation [6]. Marks et al inves-
tigated optimal operating conditions for faceAPI [7].
FaceAPI was used to implement gestural communica-
tions in shared virtual training environments [8].
FaceAPI received much attention from game devel-

opers as well. Sko and Gardner described a number of
ways how faceAPI can be applied for gaming tasks [9],
using Valve game engine. There are multiple reports in
integration of faceAPI with Unity3D engine (e.g., [10]).
However, as of this writing, there is no published work
on evaluating faceAPI with “heavy-weight” game en-
gines, such as CryENGINE, Unreal or Unigine. Thus,
the question whether faceAPI is an affordable addition
to high-quality games remains open.
We approached this question in a practical manner,

by building and evaluating a game prototype, using
faceAPI and CryENGINE2 components.

3 Game Prototype Implementation

Software: We used a non-commercial version
of faceAPI which tracks position and rotation of user
head at 30 Hz. For gaming environment, we used City
Editor from Blue Mars SDK, built with CryENGINE2
and used with permission from Avatar-Reality Inc, the
creators of Blue Mars Online world [5]. The Editor
allows to load and explore 3D scenes in a game mode,
with added options related to head tracking.

Configuration: Data exchange between the
Editor and faceAPI was implemented and tested in two
configurations: (a) client/server configuration, with
faceAPI running as a separate application and serv-
ing head pose data upon request from the Editor via
dedicated socket; (b) faceAPI compiled directly with
the Editor. The latter solution appeared more conve-
nient and allowed faster initialization of tracking: 1-2
seconds as compared to 2-3 seconds in case (a).

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN9-24

290

Denoising tracking data: Each head pose
(rotation and translation) provided by faceAPI is ac-
companied by confidence value, which indicates how
much the data can be trusted. Confidence drops to
near-zero values in poor lighting conditions and when
the user is moving away from the camera field of view.
As defined, confidence could be used to attenuate the
pose data, in order to reduce noise in peripheral ar-
eas. However, confidence itself is noisy and needs to
be smoothed prior using. Instead, we opted to use an
explicitly defined bell-shaped attenuation function:

a(d) = (1 + s2d2)−2

Here d is the azimuth of user head in camera space,
parameter s defines the slope. Setting s = 0.08 yielded
useful results (see Figure 1). For every pose, the head
rotation and translation values are multiplied by a(d),
which allowed to fade the effect of tracking in and out,
as the head enters and leaves the camera viewing range.

−30 −20 −10 0 10 20 30

0.
0

0.
4

0.
8

A
tte

nu
at

io
n

Figure 1. Attenuation function, defined over cam-
era horizontal viewing range (degrees).

Hardware: For testing, two systems were used:

1. Sony Vaio CW laptop, 4 GB RAM, 2.53 GHz Intel
Core2 Duo CPU, nVidia GeForce GT 230M card.

2. Samsung RF510 laptop, 4 GB RAM, 1.60GHz In-
tel Core i7 CPU, nVidia GeForce GT 330M card.

As indicated, both systems have relatively modest
hardware, which made them sensitive to variations in
computational load. This turned out to be an advan-
tage, allowing for detecting and measuring changes in
game engine performance due to tracking.

4 Tracking and Game Performance

The preliminary tests were conducted on scenes with
mixed content, that included both static objects and
dynamically deformed objects, such as user avatars.
One of those scenes is shown in Figure 2. The results
showed that the impact of tracking on rendering speed
was negligible. In simple scenes that were rendered
faster than 30 FPS, frame rate dropped 10% each time
when faceAPI was started, and remained low until the
user face was acquired by the engine (1-2 seconds).
Then, FPS recovered to its initial value. In complex
scenes (over 1.5 M triangles, FPS < 30), starting and
stopping tracking had no noticeable effect on FPS.
To investigate further, we measured the system per-

formance in scenes with separate types of content:
static meshes that use little of CPU time and dy-
namic objects that require processing on CPU. For
that purpose, we used the standard avatar model from
Blue Mars SDK, with cloth and hair simulated by
mass-spring models. In static tests scenes, simula-
tion was turned off and avatars were rendered as static
meshes. In dynamic tests, the avatars were running
the “standing-idle” animation, with cloth and hair de-
formed on CPU at every frame, illustrated in Figure 3.

Figure 2. Welcome Area in Blue Mars 3D world
(1.51 M triangles @ 30 FPS). The avatar head is
tilted back and sideways, copying user head pose.
Tracking has no impact on FPS in this scene.

Figure 3. Test scene with 20 clothed hairstyled
animated avatars, processed on CPU.

Table 1. Game performance (FPS): tracker off (-)
and on (+). FPS values in static scenes, shown
as single numbers, were not affected by tracking.

objects : tris system 1 system 2
static dynamic static dynamic

- / + - / +
1 : 0.13 M 76 73 / 73 81 76 / 76
2 : 0.25 M 73 71 / 71 79 72 / 72
3 : 0.37 M 72 56 / 55 77 71 / 70
4 : 0.49 M 71 48 / 44 76 69 / 65
5 : 0.61 M 71 40 / 36 75 60 / 55
6 : 0.73 M 70 33 / 32 74 50 / 45
7 : 0.85 M 70 30 / 27 73 44 / 39
8 : 0.97 M 69 27 / 24 72 40 / 36
9 : 1.09 M 69 25 / 19 72 35 / 30

10 : 1.21 M 69 20 / 14 71 31 / 28
11 : 1.33 M 68 16 / 12 70 29 / 24
12 : 1.45 M 68 13 / 9 70 25 / 20
13 : 1.57 M 68 9 / 7 69 23 / 18
14 : 1.69 M 67 8 / 6 69 20 / 15
15 : 1.81 M 67 8 / 5 69 16 / 12
16 : 1.93 M 67 7 / 4 69 15 / 11
17 : 2.05 M 66 6 / 4 68 14 / 11
18 : 2.17 M 66 5 / 3 68 14 / 10
19 : 2.29 M 66 5 / 3 68 13 / 9
20 : 2.40 M 66 4 / 3 68 11 / 8

For static and dynamic modes, the scene size was
varied from 1 to 20 avatar objects. Each scene was
rendered twice, with and without head tracking. The
test results are plotted in Figure 4 and listed in Table 1.
The test results allowed us to draw two conclusions.

Non-existing impact in static scenes. For static
3D content with GPU-bound rendering, tracking
has zero impact on performance. As Table 1
shows, frame rate slowly decays from 76 to 66 FPS
(81 to 68, for system 2), as the number of objects
increases from 1 to 20. These values remain un-
changed, when tracking is turned on and off.

Insignificant impact in dynamic scenes. When
the scene content is predominantly dynamic,
the game performance is limited by CPU. In
this case, tracking has a measurable effect on
rendering speed, with mean slowdown of 2.6
and 3.7 FPS, for systems 1 and 2, respectively.
On both systems, the cost of tracking does not
depend on the scene size.

291

5 10 15 20

0
20

40
60

80

5 10 15 20
0

20
40

60
80

 System 1 System 2

 Number of avatars

F
ra

m
es

 p
er

 s
ec

on
d

tracking off
tracking on

Figure 4. Impact of tracking on rendering dy-
namic objects (see Figure 3). Tracking becomes
noticeable in scenes with more than 2 avatars, at
average costs of 2.6 and 3.7 FPS.

The dynamic test scenes used in our study represent
the worst case scenario, which practically never hap-
pens in real game scenes. Normally, game engines try
to minimize the CPU load by lowering update rate on
dynamic objects when their pixel footprint is low. In
the Editor, no such optimizations take places, showing
the overly conservative measurements.
To summarize our findings: on multi-core platforms,

the impact of video-based head tracking varies from
non-existing to low, including the worst case scenario
with all-dynamic scene content. We conclude that
video-based head tracking is computationally afford-
able for high-end 3D games. In the next section, we
will present several cases of practical application of nat-
ural head motion, in the context of 3D social games.

5 Practical Application of Natural Head
Motion in Social Games

The Blue Mars SDK provides a number of techniques
for controlling avatar behavior and appearance. By
adding head tracking, we created several novel appli-
cations of these techniques, that will be described next.

5.1 Avatar Pose Control

This is the most straightforward example of motion
data transfer. The user head rotation is applied to the
avatar neck joint, making the avatar reproduce user
head movements. Head rotation is added in a layered
fashion, blending user motion with the current avatar
pose. Although the technique is simple, it allows to
create expressive poses, demonstrated in Figure 5.

Figure 5. Direct transfer of player’s head rotation
to avatar’s neck joint. The rotation is added to
the currently active animation (e.g., idle motion),
blending the two motions smoothly and yielding
a variety of natural looking movements.

5.2 Changing Avatar Facial Expressions

In Blue Mars, avatars have an in-built social behav-
ior that makes them temporarily direct their heads
and eyes towards other avatars, when they enter the
avatar’s viewing range. This feature is called “look-
around”, and it helps to convey a message to other
players that their presence is noted.
We improved this automatic behavior using head ro-

tation. While the avatar’s eyes remain locked on the
object of interest (i.e., the other avatar’s face), addi-
tional head rotations produce new facial expressions,
such as teasing, disbelief, or turning someones nose
up, as illustrated in Figure 6.

Figure 6. Two avatars are facing each other. Left
pair: normal idle pose when neither avatar shows
signs of noticing its neighbor. Middle pair: “look-
around” feature is in effect, making the avatars
look at each other. Right pair: user head rotation
is added, changing the avatar’s facial expressions.

5.3 Avatar Awareness of Player Presence

In third-person view, the “look-around” behavior
can also be directed towards the players themselves. In
this mode, the player’s location is defined by the virtual
camera position. By turning its head and eyes towards
the camera, the avatar appears looking straight in the
player’s eyes, as shown in Figure 7. This feature can be
refined by adjusting the camera position by the physi-
cal displacement of the player’s head. As the result, the
avatar will trace the player’s head movements, while
the “look-around” feature is in effect. This behav-
ior will strengthen the player’s impression that their
avatars are aware of the player’s presence.

5.4 Personalizing Avatar Behavior

All user-created motions can be recorded and later
reused, either on explicit command, such as key press,
or embedded into autonomous behaviors, as the look-
around feature, described above. In latter case, one
can record a personalized head gesture, for example, a
friendly nod, that will be displayed when a recognized
“friend” avatar appears nearby. Conversely, recently
un-friended players may be greeted by a pre-recorded
head motion, indicating displeasure, for instance, turn-
ing head away. Such personalized autonomous behav-
iors will support the illusion of presence, even when
the player is temporarily away from keyboard.

292

Figure 7. Avatar awareness of player presence.
Left: idle behavior. Right: attention on player.
Tracking will make the avatar continuously main-
tain eye contact with the player.

5.5 Head Motion and Camera Control

In immersive VR systems that utilize head mounted
displays (HMD), head motion is almost always directly
transferred to camera position and orientation, using
one-to-one mapping. Exceptions are made only for sys-
tems that aim to compensate for limited field of view
of an HMD, by amplifying horizontal or vertical head
rotation. In Augmented Reality systems the rule of
direct motion transfer is even more strict.
On the contrary, non-immersive games are more flex-

ible about camera controls, providing a variety of view-
ing options, such as free-camera mode, third-person or
aerial view. Thus, user head motion can be treated
as loosely coupled with various viewing tasks. As an
example, we implemented camera-sliding technique,
which moves the virtual camera sideways, when the
user rotate their head left of right, for more than 30
degrees. This technique appears useful in scenes where
occluding objects are present, at close range. The test
scene is shown in Figure 8.

Figure 8. Camera sliding for a simple counting
task. Top: external view. Center: female player’s
view, with all objects of interest occluded by a
tree. Below: prompted by used head rotation,
camera slides to the right, removing occlusion.

6 Conclusions

We have presented results of the case study on in-
tegrating faceAPI tracking system with CryENGINE2
high-performance game engine and these results are
very encouraging. In our experimental settings with
multi-core platforms, the impact of motion tracking
varied from non-existing to low, including the worst
case scenario with all-dynamic scene content. That
proves that camera-based motion tracking is an afford-
able technology for photo-realistic 3D games.
We also presented a number of novel techniques for

controlling user avatar appearance and behavior, based
on natural head motion. These techniques demon-
strate that head tracking is a powerful extension to
traditional game controls, especially in the context of
3D social worlds, where head motion can be particu-
larly effective.
We conclude that motion tracking is not only a prac-

tical, but also an enabling technology for 3D games.
We showed how user head movements can enhance
players’ interaction in social worlds, when their avatars
are in close proximity to each other. Nodding, head
shaking and more subtle uses of body language, such
as gaze averting or seeking eye contact – these are but a
few examples of new ways for players to express them-
selves. These new interfaces, enabled by head tracking,
constitute a rich ground for further research.

References

[1] J. J. LaViola Jr.: “Bringing VR and Spatial 3D Inter-
action to the Masses Through Video Games,” Com-
puter Graphics and Applications, pp. 10 - 15, 2008.

[2] Crytek,
http://www.crytek.com/

[3] faceAPI,
http://www.seeingmachines.com/product/faceapi/

[4] faceAPI Specifications,
http://www.seeingmachines.com/product/faceapi/

specifications/

[5] Blue Mars Online,
http://www.bluemars.com

[6] F. Lu, T. Okabe, Y. Sugano, Y. Sato: “A Head Pose-
free Approach for Appearance-based Gaze Estimation,”
BMVC 2011, http://dx.doi.org/10.5244/C.25.126, 2011.

[7] S. Marks, J. Windsor, B. Wünsche: “Optimisation and
Comparison Framework for Monocular Camera-based
Face Tracking,” IVCNZ’09 24th International Confer-
ence, pp. 243 - 248, 2009.

[8] S. Marks, J. Windsor, B. Wünsche: “Head Tracking
Based Avatar Control for Virtual Environment Team-
work Training,” International Conference on Computer
Graphics Theory and Applications (GRAPP), pp. 257
- 269, 2009.

[9] T. Sko and H. Gardner: “Head Tracking in First-
Person Games: Interaction Using a Web-Camera,” In-
ternational Conference on Human-Computer Interac-
tion, pp. 342 - 355, 2009.

[10] Unity 3D faceAPI Tutorials,
http://forum.unity3d.com/threads/

69364-Unity-3D-faceAPI-Tutorials

293

