
Client-Driven Content Extraction Associated with Table

K.C. Santosh and Abdel Beläıd
LORIA - Université de Lorraine

54506 Vandoeuvre-lès- Nancy, France
{santosh.kc, abdel.belaid}@loria.fr

Abstract

The goal of the project is to extract content within
table in document images based on learnt patterns.
Real-world users i.e., clients first provide a set of key
fields within the table which they think are important.
These are first used to represent the graph where nodes
are labelled with semantics including other features and
edges are attributed with relations. Attributed rela-
tional graph (ARG) is then employed to mine similar
graphs from a document image. Each mined graph will
represent an item within the table, and hence a set of
such graphs will compose a table. We have validated
the concept by using a real-world industrial problem.

1 Introduction

In document analysis and processing, table extrac-
tion from document images has been received an im-
portant attention since it contains key information. In
the context of table extraction [1–4], document image
analysis and processing basically describes table either
in terms of lines and (un)analysed text blocks, a set
of cells resembling the two-dimensional grid or a set
of strings that are integrated with each other via rela-
tions, for instance.
Basically, table detection and its structure recogni-

tion are two major tasks. Table detection can be taken
as a primary issue, which is however does not provide
a complete solution [5] since one needs to be able to
extract key fields within it. Existing methods such as
table segmentation [6] do not extract key fields, nor do
they explicitly perform the content understanding [7].
Note that structural information by considering rela-
tions between the contents, for instance can be very
useful in indexing and retrieving document informa-
tion [2]. To analyse table-forms structure, rulings tech-
niques are basically limited without a priori knowledge
about table organisation [1]. Such concepts are com-
pletely failed since not all tables possess graphical lines.
Besides, plain ascii texts, text blocks are used. Detect-
ing columns, lines and headers, and representing them
in terms of graph, for instance is interesting since it
contains structural information. In order to fully ex-
ploit table in the scanned documents rather than just
outlining the overall boundary, it is interesting to ex-
tract those fields that are important or meaningful for
the clients. To handle this, in this paper, key fields are
provided by the clients. These key fields are then used
to build a graph so that it can be applied for table
extraction in the absence of clients.
The rest of the paper is organised as follows. We

start with explaining the proposed method in Sec-
tion 2. Full experiments are reported and analysed
in Section 3. The paper is concluded in Section 4.

doc. image 1
...
doc. image D

table
extraction

2. graph mining

doc. image

1. graph-based
pattern repn.

input pattern
via client

Figure 1. Work-flow showing two consecutive
phases: graph-based pattern representation and
graph mining, to handle table extraction.

2 Proposed method

Generally speaking, table is composed of similar
items (sometimes just a single) even when columns
alignment and corresponding text flow (either in a sin-
gle or multiple lines) are not guaranteed. Given an in-
put pattern (i.e., an item, for instance) from a client,
finding similar patterns from the document is the core
part of the paper. It not only extracts important fields
(in accordance with the client) but also configures table
represented by a set of similar patterns. To handle this,
we first represent an input pattern via an ARG and
perform graph mining so that similar graphs can be
extracted that are structurally and semantically simi-
lar. Fig. 1 shows a screen-shot of the overall idea.

2.1 Graph-based pattern representation

In any document d, the clients provide input pat-
tern(s) while showing the interest of the particular
type t of table in either header, body or footer zone:
tablet = {patternn, n ∈ [1,N]}, where N can be arbi-
trary. An example of input pattern is shown in Fig. 2
i.e., it is just a collection of the selected key fields:
{fieldi}Ai=1. To represent each field, we define a fea-

ture set F as
{
featuref

}F

f=1
. For any i-th field, we can

formally represent feature as fieldFi =
{

(box: [left, top, right, bottom]); (wSep: words separation);
(value: content); (noW: number of words);
(type: content type); (noL: number of lines);
(size: string length); (label: date and price,

for instance.)
}

(1)

The labels are the derivative of features, representing
semantic values via regular expressions. Thanks to the
regular expressions, we are able to express a wide range
of string values even when we have possible OCR errors
due to broken characters and characters are connected
with graphics, for instance. To exploit relative posi-
tioning between the key fields, we basically use bound-
ing box and its projection into 3× 3 partitions [8] (de-
fined in IR2 i.e., left, right, . . .). For more precision,
we integrate the level of neighbourhood k into the basic
predefined set of spatial predicates, we have

rij = spatial predicatek1,k2
(fieldi, fieldj). (2)

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN9-21

277

input pattern ↘

⇒
r12

r23

r34r45

r51

r13r14
r24

r25

r35

v1

v2

v3

v4

v5

Figure 2. An ex-
ample of the input
pattern and the
corresponding graph
that includes miss-
ing fields.

Formally, k = 0 for an adjacent (an immediate field),
and k varies from 1 to A − 1 for non-adjacent ones.
Note that k1 and k2 represent horizontal and vertical
orientations, respectively.
Now, we introduce a 4-tuple ARG

G(V,E, FV , FE),

where

• V is a finite set of nodes (fields);
• E ⊆ V × V i.e., a finite set of edges and each

rij ∈ E is a pair of (vi, vj) where vi, vj ∈ V ;
• FV : V → LV , LV represents a set of nodes as

well as their labels L; and
• FE : E → RE , RE represents the edges via rela-

tions.

To make graph complete, we also include non-selected
fields which are mainly missing and neighbouring
fields. To know how many words can be taken for
a single field, we simply use intra-field (i.e., maximum
distance between the words in a single field) knowledge
from the selected key fields.

2.2 Content extraction via graph mining

Given the pattern graph Q, to extract similar graphs
from a document, it starts with pivotal nodes selec-
tion in a document and perform relation assignment
to compute feature score between the pairs of nodes.
Relations assignment repeats until a similar graph G
is achieved, with respect to Q.

Pivotal nodes selection. In a predefined set L of
labels such as price, date, address and description
in the domain, for every node vqi in pattern graph
Q, the corresponding label �qi ∈ L is defined i.e.,
V q = {(vqi , �qi), i = 1 . . .Vq}. Having these labelled
nodes

{
(vqi , �

q
i)
}

in a pattern graph Q, the target is

to select nodes sharing identical labels
{
(vî, �î)

}
from

a document d. We now, refer the selected nodes as
pivotal nodes.

Feature score computation. Each pivotal node is
taken and started to validate relations with neighbour-
ing nodes in a document, as in pattern graph. To com-
pute feature score between the pair of nodes (vi, vj) in a
document with respect to (vqi , v

q
j) ∈ Q, their respective

relations must be identical i.e., rqij validates with rij .
More formally, we can compute feature score between
two corresponding nodes vq and v as f.score(vq, v) ={

1 : label in vq = label in v, and
1
F

∑
f λf × s

featuref

vq,v : otherwise,
(3)

where λf ∈ [0, 1] provides weight to each features
used to compute feature matching score s(,). For each
particular feature, weight λf can be varied according
to its robustness and so is application dependent.
Given two strings: x reference and y primary, we
compute feature (like string value, number of words
and size (cf. Eq. (1))) matching scores as follows.
• String type:
stypex,y = 1− (

Levenshtein dist.(x, y)/max(x, y)
)
, where

we treat numerals {0−9}, all alphabets {A−Z, a− z}
and symbols equally.
• Number of words in a string:
sword
x,y = 1 − (

dist.word(x, y)/max(x, y)
)
i.e., an abso-

lute difference in number words is normalised by the
maximum number of words.
• String size:
slengthx,y = 1 − (

dist.length(x, y)/max(x, y)
)

i.e., an
absolute difference in size (number of letters) is
normalised by its maximum size.

Following Fig. 3, let us elaborate a concept of match-
ing. To simplify the explanation, let us first create a
relation vector space from a pattern graph and then
realise the assignment process for each pivotal node in
a document. Taking a single pivotal node v1 from a
data graph G (having identical label with respect to
vq1 in Q i.e., �p1 = �q1 ∈ L), the idea is to assign rela-
tions

{
rq12, r

q
13, r

q
14

}
in data graph G. We validate rela-

tions {r12, r13} one-by-one and compute feature score
in parallel. It provides G ⊆ Q. However, an addition
of a node v3 can help to make them exactly similar in
configuration via an edit cost operation.

Graph matching score computation. An aggre-
gation of both scores i.e., r.score from relation assign-
ment and f.score from feature computation between
the nodes yields a matching score S for data graph G
with respect to Q

S(Q,G) = α
1

R

∑
i,j∈Rq,i �=j

r.score(rqi,j , ri,j) + (4)

(1− α)
1

Vq

∑
i∈V q

f.score(vqi , vi), α ∈ [0, 1].

Confidence score computation. From each input
pattern, a set of mined graphs {(Gg, Sg)} will represent
a table i.e., an output. For such an output, we compute
corresponding confidence score (CS). CS is computed
from the aggregation of all matching scores {Sg}Gg=1,

which is then normalised i.e., CStn
k

= 1
G

∑G

g=1 Sg. In
case of multiple input patterns, the outputs are ranked
and provided on a one-to-one basis. Ranking is based
on the order of similarity.

278

rq12

rq24rq23

rq34

rq13

rq14

vq1 vq2

vq4
vq3

(a) pattern graph Q

⇒

vq1 vq2 vq3 vq4
vq1 0 rq12 rq13 rq14
vq2 rq21 0 rq23 rq24
vq3 rq31 rq32 0 rq34
vq4 rq41 rq42 rq43 0

(b) adjacency matrix

⇒
0 rq13rq12 rq14

(c) relation vector space
using v1 as a pivotal node

r12

r23r13

v1 v2

v3

(a) data graph G

⇒

v1 v2 v3
v1 0 r12 r13
v2 r21 0 r23
v3 r31 r32 0

(b) adjacency matrix

⇒ 0 r13r12
(c) relation vector space
using v1 as a pivotal node

Figure 3. Relation vector
space to simplify relation
assignment. In this illustra-
tion, it shows two different
graphs: Q and G, the corre-
sponding adjacency matrices
and relation vector spaces
for a single pivotal node v1.

Note that we aim to use set of mined graphs to it-
eratively update the pattern graph and transform into
a graph model so that it can be used in the absence
of the clients – which is beyond the scope of the pa-
per. A proof of the concept is reported in [9] and the
thorough extension (aiming to apply document infor-
mation content extraction, not necessarily be always
found in structured documents like forms) has been
made in [10].

3 Experiments

3.1 Dataset and evaluation metric

Dataset. We work on a real-world industrial problem
in direct collaboration with the ITESOFT1, France.
Currently, the dataset is composed of 15 classes with
100 samples per class. For each document, clients pro-
vide ground-truths i.e., all similar patterns within the
table, according to the pattern selected.

Evaluation metric. An output i.e., the detected
table is represented by a collection of mined graphs
O = {Gg, Sg} in a test document, and there are G

◦
list of ground-truthed patterns corresponding to the
ground-truthed table O◦ = {G◦

g}G
◦

g◦=1. Each graph G
has a number of fields that are simply represented by
iconic boxes {Bb}Bb=1.
To evaluate, we extend the area-ratio-based mea-

sure proposed by Shafait and Smith [11]. It uses
bounding boxes to describe detected tables and the
ground-truths. In our framework, the overlapping ra-
tio between the two boxes is defined as OR1(B

◦
b , Bb) =

2×|B◦
b∩Bb|

|B◦
b |+|Bb| , where |B◦

b ∩ Bb| is the intersected or com-

mon area of two bounding boxes from ground-truthed
and detected table respectively and |B◦

b |, |Bb| are
the individual areas. Note that OR1(,) ∈ [0, 1].
We sum up all OR1(,) and normalise to compute
overall overlapping ratio between ground-truth pat-
tern G◦ and detected pattern G by OR2(G

◦, G) =
1

max(B◦,B)

∑
OR1(B

◦
b , Bb), {b◦ : b◦ ∈ B

◦ ∧ b ∈ B
◦}.

Then for a whole table, we can express evaluation met-
ric as

Eval(O◦, O) = 1
max(G◦,G)

∑
OR2(G

◦
g, Gg), (5)

{g◦ : g◦ ∈ O◦ ∧ g ∈ O◦}.
1http://www.itesoft.com.

3.2 Results and analysis

We have validated the outputs over 15 different sup-
pliers by taking the associated ground-truths and re-
ported the average performance in Table 1. More
specifically, it provides the two different ways to eval-
uate:

1. one is associated with the input pattern created
in the laboratory and

2. another one is directly related with client or real-
world patterns.

The first evaluation of course, aims to provide an over-
all concept that can be applied to content extraction
associated with the table. The latter one provides how
robust it is. In the reported results in Table 1, we
observe the following.

1. Without a surprise, cleaner the input pattern, bet-
ter the performance. This happens to be in eval.
1 since input patterns are created in accordance
with what OCR results.

2. In contrast, in case of the client input patterns
(eval. 2), a single field selection may sometimes
take word(s) from another closer fields (can be left
or right), and multiple lines. In that selected box
(from clients), since OCR reads some dots (due
to noise) as ‘full-stop’, ‘colon’ and ‘semi-colon’,
it does not allow possible cleaning. As a conse-
quence, feature properties representing the graph
nodes can possibly varied. Fig. 6. shows an ex-
ample of it.

Besides, another considerable issue is the complex-
ity of the graph-based pattern representation. In case
of input patterns with complex structural formats (lets
say zig-zag), such non-selected fields integration makes
pattern graph more complex. Furthermore, as said be-
fore, our system performance has been affected due
to OCR errors since the system does not provide the

Table 1. Average performance (in %) over three
different types of table: header, body and footer.

Table type⇒ Header Body Footer Avg.

Eval. 1 97 99 98 98
Eval. 2 96 98 95 97

Eval. 1 : input patterns created in lab.
Eval. 2 : input patterns from clients.
Execution time � 2 sec./doc. image.

279

input pattern (linear)

↙output patterns

(a)

CONFIDENTIAL

li
st

o
f
d
o
c
.
im

a
g
e
s
+

o
u
tp

u
ts

=⇒

1)

2)
3)
4)

5)

6)

7)

input pattern (zig-zag)

↙output patterns

(b)

CONFIDENTIAL

li
st

o
f
d
o
c
.
im

a
g
e
s
+

o
u
tp

u
ts

=⇒

1)
{

2)
{

3)

{

Figure 4. Examples showing content extraction within the table in accordance with the input pattern (from
client). Tables are composed of separately (a) seven and (b) three similar patterns in two different suppliers.

expected semantics label at nodes in the graph. An
example of the OCR effect is ‘false detection’ because
of the structural similarity between the graphs.

4 Conclusions and future perspectives

In this paper, we have presented client-driven
pattern-based approach to table extraction via graph
mining scheme, inspiring from a real-world applica-
tions. We have very much focused and validated that
the table extraction does not always mean only to de-
tect the presence and absence as well as to spot the
area where table(s) is(are) located but also to select
important key fields within it while rejecting others.
Given an input pattern (i.e., a pattern graph), find-

ing similar pattern graphs so that we can reinforce or
update it iteratively each time we extract them, is one
of the primary issues of the further work [9, 10], for
instance. As a consequence, such models are used to
exploit document information content in the absence
of clients.

References

[1] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey
of table recognition,” IJDAR, 7(1):1–16, 2004.

[2] B. Coüasnon, “Dmos, a generic document recognition
method: application to table structure analysis in a

general and in a specific way,” IJDAR, 8(2-3):111–122,
2006.

[3] M. Hurst, “Towards a theory of tables,” IJDAR, 8(2-
3): 123–131, 2006.

[4] D. W. Embley, M. Hurst, D. P. Lopresti, and G. Nagy,
“Table-processing paradigms: a research survey,” IJ-
DAR, 8(2-3): 66–86, 2006.

[5] S. Mandal, S. P. Chowdhury, A. K. Das, and B. Chanda,
“A simple and effective table detection system from
document images,” IJDAR, 8(2-3): 172–182, 2006.

[6] Y. Liang, Y. Wang, and E. Saund, “A method of eval-
uating table segmentation results based on a table im-
age ground truther,” in Proceedings of ICDAR, 2011,
pp. 247–251.

[7] F. Deckert, B. Seidler, M. Ebbecke, and M. Gillmann,
“Table content understanding in smartfix,” in Proceed-
ings of ICDAR, 2011, pp. 488–492.

[8] D. Papadias and Y. Theodoridis, “Spatial relations,
minimum bounding rectangles, and spatial data struc-
tures,” IJGIS, 11(2): 111–138, 1997.

[9] K. C. Santosh and A. Beläıd, “Pattern-based approach
to table extraction,” in Proceedings of IbPRIA. Springer,
2013, to appear.

[10] ——, “Document information extraction and its eval-
uation based on client’s relevance,” in Proceedings of
ICDAR, 2013, submitted.

[11] F. Shafait and R. Smith, “Table detection in hetero-
geneous documents,” in Proceedings of DAS, 2010, pp.
65–72.

280

