
3D Keypoint Tracking Based on Hybrid Flow Computation
for Human Motion Analysis

Sujung Bae, Sungeun Hong, Hyun S. Yang
Korea Advanced Institute of Science and Technology (KAIST)
291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

{sjbae, fastacon, yang}@paradise.kaist.ac.kr

Abstract

In this paper, we propose a robust method to track
3D keypoints for representing 3D human motions un-
der noisy depth environment. Once keypoints are ex-
tracted for tracking, the subsequent locations of the key-
points are found by estimating their 3D motion flows.
However, estimating the flows using depth information
would be a problem, especially, when some depth values
are unavailable or the data points are severely affected
by noise. To handle such circumstances, we suggest
hybrid flow computation scheme that selectively utilizes
range flow and optical flow estimation methods. Exper-
imental results show that the proposed method outper-
forms the conventional flow estimation methods under
problematic environment in terms of tracking accuracy
and performance, with linear increase in computational
time.

1 Introduction

Human motion analysis has been a key technol-
ogy in many future-oriented applications in the field
of human-computer interaction (HCI), visual surveil-
lance, and home healthcare. For such reasons, it has
been vigorously researched in the last two decades.
Human motion can be basically represented in 2D

and 3D. Although approaches of representing human
motion in 2D have low complexity and short compu-
tation time, they have depth ambiguity and thus can
not completely represent 3D motions of humans. Re-
cently, there has been new efforts to devise 3D-based
features that reflect actual human motions[1, 2]. There
are mainly two ways of reflecting 3D human informa-
tion in studies. The first method constructs the human
body in forms of 3D volumes and skeletons using mul-
tiple cameras. The other method constructs the depth
information from an entire scene with human objects.
The depths are estimated by either stereo vision or
range-camera technology. However, these studies have
limitations in that their tasks are time-consuming with
high complexity and cost, compared to 2D-based tasks.
Fortunately, with the development of Kinect, depth in-
formation can be obtained quickly with low cost and
complexity. The advent of Kinect opened novel possi-
bilities for devising competitive 3D-based features that
reflect actual human motions.
To represent motion in 2D by tracking keypoints

from an image, optical flow estimation method is used
in many cases[2]. For 3D cases, in correspondance
with 2D, range flow estimation method can be used
for representing 3D motion[4]. As stated in [5], where
range-flow field is used to represent the motion field
of a scene, manipulation of depth values obtained via

Kinect raises some issues: i) the depths are not always
stable; ii) there are some areas in which the depth val-
ues are not available. These problems worsen espe-
cially in the contour areas of humans and objects.

In this paper, we propose a novel hybrid flow com-
putation scheme for tracking 3D keypoints to repre-
sent human motions. Once keypoints are extracted in
human-body areas, the points are tracked in a pyra-
midal tracking framework. The subsequent locations
of keypoints are found by using 3D motion flow esti-
mation. When depth values for the keypoint are suffi-
ciently stable, range flow is estimated by applying the
algorithm suggested by Barron and Spies[4]. In case
the depth values are unavailable or severely affected by
noise with increased fluctuation, optical flow algorithm
suggested by Horn and Schunck[3] is used instead for
keypoint tracking. This makes our proposed method
robust under problematic depth environment. Thus,
our main contribution is in the development of a ro-
bust 3D keypoint tracking method to handle data with
problematic depths, which are typically generated by
low-cost devices.

2 Preprocessing

Two preprocessing steps are necessary for tracking
motion with color and depth images obtained through
Kinect. First, the depth image needs to be in align-
ment with the color image, because color and infrared
(IR) cameras of Kinect are placed in different loca-
tion and their fields-of-view (FOVs) are different. For
the alignment, we use a function provided by OpenNI
library[8]. Then, we conduct normalized convolution
(NC) on the depth image to reduce those areas in which
the depth values of pixels are not available. This un-
availability is the result of limitation of Kinect in com-
puting depth. The NC estimates unknown values by
interpolation of known values[7]. Gaussian filter is used
as the smoothing filter for NC.

3 3D Keypoint Tracking

3.1 Keypoint selection

The keypoints to be tracked need to be selected be-
fore the tracking phase. As stated in [6], a good point
to be tracked satisfies equation (1) where λ1 and λ2

are two eigenvalues of matrix

G =

[∑
Ix2

∑
IxIy∑

IxIy
∑

Iy2

]

min(λ1, λ2) > thresh (1)

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN9-19

268

An element of G is composed of the sum of gradients
about x and y directions in a grayscale image, denoted
by Ix and Iy, on a small patch centered at a point.

Among the selected points, those outside the human
area are not of interest, so they are discarded. To
do that, we receive help from a function performing
human area segmentation utilizing depth information
in NITE libraries[9].

3.2 Keypoint tracking

A selected point in 2D and its corresponding depth
value constitute a projective point p = [x, y, Z]T . We
do not convert it to a point P = [X,Y, Z]T in Camera
Space, which is 3D space centered at the camera. This
is because it is easy to compute gradients of intensi-
ties and depths for each point in the projective space.
However, for notation consistency when explaining the
conventional flow estimation algorithms, a projective
point p = [x, y, Z]T is denoted by P = [X,Y, Z]T .

The keypoint tracking problem and its solution are
described as follows. Let p = [X,Y, Z]T be a keypoint
to be tracked at time t. The problem is to find p′
which is the location of p at time t + 1. We solve the
problem by deriving p’s displacement f , 3D motion,
in time between t and t + 1, which is formulated by
p′ = p+ f .

Algorithm 1 Pyramidal 3D keypoint tracking

Require: LMAX , LMIN , I, J, ZI, ZJ, P
Ensure: P′, F
1: Normalize depth images, ZI,ZJ
2: Build pyramidal images for I,J,ZI,ZJ
3: for pyramid level l = LMAX to LMIN do
4: Smooth Il,Jl,ZIl,ZJl

5: Adjust Pl,ZIl,ZJl for level l
6: Compute flows Fl of Pl with Algorithm 2
7: end for
8: F← FLMIN

9: P′ ← P+ F

We adopt a pyramid representation to handle large
motions, which is a classical approach used in 2D key-
point tracking. Algorithm 1 describes the overall pyra-
midal 3D keypoint tracking framework. In the algo-
rithm, let I and J be the grayscale images, and ZI and
ZJ be the depth images at time t and t + 1, respec-
tively. P is a set of keypoints at time t. LMAX and
LMIN denote the maximum and minimum pyramidal
levels. The algorithm starts by normalizing depth val-
ues and adjusting the scale to that of the intensity. All
variables with superscript l denote their values at level
l. For example, Il is an image at level l. We build
pyramidal images so that the sizes of images at level
l − 1 are twice as large as those of the images at level
l. At each pyramid level, we need to relocate points
and readjust depth values according to that level after
smoothing images, which are

Pl = P/2l

ZIl = ZI/2l,ZJl = ZJ/2l
(2)

Then, Pl’s flow Fl is computed with Algorithm 2 which
will be explained next. When the last level of the pyra-
mid is reached, the flows derived at that level become
P’s displacement.

The range flow estimation is suggested by Barron
and Spies to represent 3D motion for a point on
surface[4]. The flow estimation problem is described as
in (3) where both motion constraints and the partial
derivatives of the flow are to be minimized. In the ex-
pression, (ZX , ZY , and Zt) and (IX , IY , and It) are the
depth and intensity gradients about positions X and
Y , and time t. Further, ([UX , UY , UZ], [VX , VY , VZ],
and [WX ,WY ,WZ]) denote partial derivatives for each
of the flow components U, V, and W with respect to
positions X,Y, and Z.∫ ∫ ∫ ∫

(ZXU + ZY U +W + Zt)
2

+β2(IXU + IY V + It)
2

+α2(U2
X + U2

Y + U2
Z + V 2

X + V 2
Y + V 2

Z

+W 2
X +W 2

Y +W 2
Z)dXdY dZdt

(3)

The solution for equation (3) is[
Uk+1

V k+1

Wk+1

]
=A−1

[
α2U

k−ZXZt−β2IXIt

α2V
k−ZY Zt−β2IY It

α2W
k−Zt−β2It

]
,

A=

[
Z2

X+β2I2
X+α2 ZXZY +β2IXIY ZX

ZXZY +β2IXIY Z2
Y +β2I2

Y +α2 ZY

ZX ZY 1+α2

] (4)

where [U, V,W]T is the range flow, and [U, V ,W]T is
the local average reflecting neighboring flows estimated
in the previous iteration. The solution is very similar
to Horn and Schunck’s iterative optical flow solution[3],
as shown below.[

uk+1

vk+1

]
=A−1

[
α2uk−IxIt

α2vk−IyIt

]
,

A=

[
I2
x+α2 IxIy

IxIy I2
y+α2

] (5)

where [u, v]T is the optical flow and [u, v]T is the lo-
cal average. The solution for the optical flow will be
calculated when we can not estimate range flow.

Algorithm 2 Iterative estimation of flow

Require: pl, gf , l, LMAX , LMIN , Il, Jl, ZIl, ZJl

Ensure: f l, gf
1: if l = LMAX then
2: Initialize flow guess gf l with zeros
3: end if
4: Make patches of pl with gf l

5: if All the depth values in patches are available then
6: Iteratively compute range flow f l

7: end if
8: if There are unavailable depths in patches, or Line 6

is not converged then
9: Iteratively compute optical flow f l

10: component W of f l ← 0
11: end if
12: if l �= LMIN then
13: gf l−1 ← 2(gf l + f)
14: else
15: f l ← gf l + f l

16: end if

More details about Algorithm 2 is given for a key-
point to be tracked. We limit neighboring points and

269

their flows to those defined on a small patch around
the keypoint. Therefore, we ensure that the patches
of the keypoint correspond to I,J,ZI, and ZJ. A
patch ranges from Y−WINY to Y+WINY for the y-
axis and from X−WINX to X+WINX for the x-axis.
The WINY and WINX denote the patch’s height and
width. The patches on J and ZJ are translated by flow
guess at level l which is the flow computed at a pre-
vious level for the keypoint. Then we compute flows
for all the points on a patch by appying the aforemen-
tioned iterative solution for range flow. Later, only
the center point on a patch has a chance to supply a
flow for the keypoint. Although we attempt to remove
those pixels whose depth values are unavailable, as de-
scribed in Section 2, we can encounter such pixels on
depth patches. In addition, it is possible that the it-
eration for the solution may not converge within the
limited number of times owing to severely noisy depths.
For such a point, we compute the optical flow instead
of the range flow and apply equation (5) instead of
equation (4). When calculating the solutions, for com-
puting gradients we follow a method suggested by Horn
and Schunck[3]. However, the manner of computing lo-
cal averages is slightly different from that suggested by
Horn and Schunck. In our algorithm, local averages are
computed through two-step convolution of the neigh-
boring flows with weights W1 and W2. Equation (6)
describes this convolution for a flow component U .

U
k
= (Fk−1

U ⊗W1)⊗W2 (6)

where Fk−1
U is a matrix having values of the flow com-

ponent U obtained from the previous iteration on the
patch. W1 is a Gaussian kernel having the same size
as the patch, and W2 is the matrix[

1/12 1/6 1/12
1/6 0 1/6
1/12 1/6 1/12

]

The averages for V
k
,W

k
,uk, and vk are computed in

the same manner.
Once the iteration is terminated, we obtain the es-

timated flows on the patch. Then, a point p’s flow f
at that pyramidal level becomes the flow at the cen-
ter of the patch. This flow is readjusted and becomes
flow guess for the next pyramidal level. If the current
level is the last level, the flow becomes the final flow
along with flow guess at that level. Algorithm 2 briefly
describes the aforementioned process.

3.3 Additional tasks

During tracking, keypoints are lost owing to several
reasons: i) a point exits in the image, ii) either 2D or
3D norm of a flow is too large, iii) patches centered at
a tracked p′ on J and ZJ are very different from those
centered at p on I and ZI. In these cases, we consider
a point as lost and discard it. When there are an in-
sufficient number of keypoints at frame t, additional
keypoints are newly selected and added.
In addition, since we scale down the depth values

for stable tracking, a tracked Z position tends to be
less accurate than tracked X and Y positions. To in-
crease its accuracy, we alpha-blend the value of tracked
Z with the depth value corresponding to the tracked
(X,Y) position in ZJ .

4 Experimental Results

Two different tracking results are compared to our
tracking result. The first set of results are obtained
from a tracking method using only range flow, referred
to as M2. The second set of results are obtained from
a tracking method using 3D optical flow, referred to as
M3. In M3, keypoints are tracked using optical flow
in 2D. Then, depth values at the tracked locations be-
come the points’ Z positions. Hereafter, we denote our
tracking method by M1. The projective points from
M1, M2, and M3 are converted to points in Camera
Space to represent the points in 3D space. Units of
three axes for Camera space are millimeters. Kinect
produces videos at 30 frames per second (FPS). We
recorded six movies containing three simple activities
performed by two subjects in front of Kinect. Table 1
gives descriptions of these activities. In the table, #
denotes the total number of frames of the movies of
two subjects for a activity. While tracking the points,
if the number of tracked points are less than 250, we
add newly selected points.

Table 1. Descriptions of activities

Activity # Description
1 255 A subject moves forward and backward
2 298 A subject make a gesture of pushing and

pulling with his/her arm
3 505 A subject moves his/her body from side

to side

We compare M1, M2, and M3 in terms of tracking
accuracy and performance. There is no dataset with
ground truth recorded by Kinect to measure the accu-
racy as the unit of a point. Therefore, the comparison
is examined in statistical point of view. In terms of the
tracking performance, we focus on how many points are
tracked and for how long the points are tracked.

The comparison results are presented in Table 2.
In the table, the first three rows show averages and
standard deviations about the X,Y, and Z locations
of tracked points. The next three rows are concerned
with the three flow components. In each of the six
rows, standard deviations are described in parenthe-
ses. The row starting with NT shows the total number
of tracked keypoints.

Figure 1. Standard deviations of two flow groups.

The comparison results show two noteworthy points.
First, M1 tends to produce smaller standard deviations
especially in the third component of flow, labeled as Z
flow, than the other methods. The large variances of
M2 and M3 are caused by erroneous Z flows, as shown
in Figure 1. The figure illustrates the standard de-
viations of two groups where Z flows are grouped as
normal (Z flow <= 100 mm) and erroneous (Z flow >

270

Table 2. Comparison results

Activity 1 Activity 2 Activity 3
M1 M2 M3 M1 M2 M3 M1 M2 M3

X 113.5(160.7) 111.4(201.9) 109.2(159.4) 43.7(171.0) 44.3(204.0) 33.9(163.7) 132.8(355.8) 156.5(418.4) 124.1(359.9)
Y -156.8(311.3) -123.2(347.7) -150.0(310.4) -173.5(427.8) -177.5(433.3) -186.7(420.6) -166.6(391.7) -142.3(455.0) -157.6(381.3)
Z 1607.7(603.7) 1682.1(848.3) 1593.1(546.9) 2096.1(657.5) 2143.1(857.1) 2075.8(590.6) 2268.2(466.0) 2435.1(870.9) 2265.4(465.5)

X Flow -0.0(7.7) -0.0(6.9) -0.0(17.2) 0.4(10.5) 0.8(9.6) 0.1(18.8) 0.2(15.4) 0.4(13.2) 0.2(30.5)
Y Flow -0.1(9.5) -0.2(10.3) -0.1(24.6) -0.1(10.7) 0.2(9.3) -0.1(32.4) -0.0(11.0) 0.0(11.4) -0.1(28.1)
Z Flow 3.3(60.8) 6.6(76.8) 2.6(130.8) 2.6(76.3) 5.6(85.6) 1.1(169.8) 1.9(66.5) 2.7(67.6) 2.2(159.3)

NT 61381 22914 60481 63709 39323 62460 124202 31843 118323

100 mm). In the figure, M2 and M3’s erroneous flow
groups produce much larger standard deviation than
M1’s. Second, M1 tracks more keypoints for a longer
time than M2 and M3, which is shown in the last row in
Table 2 and Figure 2. During the entire time frame, we
accumulate the number of tracked points which are the
points that survive without failure within each frame.
The accumulated number for each method is described
in the row labeled with NT in Table 2. According to
this, the points in M1 are tracked 2.65 times more than
the points in M2, while the difference in the numbers
of tracked points between M1 and M3 is negligible.
Through the comparisons, it turns out that M1 has
fewer occurrences of lost points than the other methods
while tracking keypoints. This also affects the lifetime
of tracked points, indicated by the number of frames
from the beginning of tracking to the failure of track-
ing. Each tracked point’s lifetime is examined and the
result is illustrated in Figure 2. The two numbers in

Figure 2. Percentage of points belonging to a spe-
cific range of lifetime.

square brackets on the x-axis indicate the beginning
and end of the lifetime range. As shown in the figure,
the points tracked by M1 have the highest possibility to
survive for a long time. On the other hand, the points
tracked by M2 have the highest possibility to be lost
within a short time. Figure 3 illustrates the visualiza-
tion of tracked 3D keypoints and their flows for a scene
where the subject pushes with her arm. The keypoints
and flows are drawn as black points and magenta lines,
respectively. The blue lines and red rectangles, respec-
tively, indicate the subject’s skeletons and 15 joints
whose locations are obtained by NITE library[9].

5 Conclusion

Thus far, we have looked at 3D keypoint tracking
method by estimating 3D motion flow under prob-
lematic depth environment. Through experiments,
we found that our proposed hybrid flow computation
scheme makes the keypoint tracking robust, compared
to the other methods just using conventional flow such
as optical and range flow. The proposed method re-

Figure 3. Visualization of 3D keypoints and their
flows.

quires slightly longer computation time than the other
methods. Nevertheless, we expect this method is bene-
ficial to researchers who attempt to understand human
behavior under problematic environment.

Acknowledgments: This research was supported by
the IT R&D program of MKE/KEIT, (10039165,
Development of learner-participatory and interac-
tive 3D virtual learning contents technology)

References

[1] T. B. Moeslund, A. Hilton, V. Krger: “A survey of
advances in vision-based human motion capture and
analysis,” Computer Vision and Image Understand-
ing, vol.104, pp.90-126, 2006.

[2] X. Ji, H. Liu: “Advances in View-Invariant Human
Motion Analysis: A Review,” IEEE Trans. Systems,
Man, and Cybernetics, vol.40, no.1, pp.13-24, 2010.

[3] B. K. P. Horn, B. G. Schunck: “Determining optical
flow,” Artificial Intelligence, vol.17, pp.185-203, 1981.

[4] J. L. Barron, H. Spies: “The Fusion of Image and
Range Flow,” Multi-Image Analysis, vol.2032, pp.171-
189, 2001.

[5] J.M. Gottfried, J. Fehr, C. S. Garbe: “Computing
Range Flow from Multi-modal Kinect Data,” Inter-
national Symposium on Visual Computing, 2011.

[6] J. Shi, C. Tomasi: “Good features to track,” IEEE
Conf. on Computer Vision and Pattern Recognition,
pp.593-600, 1994.

[7] Next Generation Artificial Vision Systems, Artech House,
2008.

[8] OpenNI Library: http://openni.org/
[9] NITE Library: http://www.primesense.com/nite

271

