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Abstract

In this paper we present a 3D semantic outdoor
mapping system with multi-label and resolution octree
maps based on the OctoMap mapping framework. The
semantic labeling of point clouds uses conditional ran-
dom fields. Speeding up the conditional random field,
we use an adaptive graph downsampling method based
on voxel grids and the histogram-of-oriented-residuals
operator to describe the local point cloud distribution.
We validate the proposed classification and map repre-
sentation approach on real-world 3D point cloud data.
The presented classification approach achieves an over-
all precision about 96%. The integration of the classi-
fication results into the map data structure offers the
opportunity to solve complex task settings. Further-
more, the runtime of the presented approach allows an
integration of the classification into a real-time 3D se-
mantic outdoor mapping system.

1 Introduction

In recent years, simultaneous localization and map-
ping (SLAM) algorithms for environment mapping
with cameras and 2D or 3D laser range finders have
been developed. Most of the created maps are repre-
sented as a mixture of metrical and topological data
structures. For outdoor environments, mainly object
classification approaches for camera, laser range, and
fused data based on probabilistic graphical models
(PGMs) have been established to create semantic la-
bels as presented in Section 2. Only few approaches
combine the semantic labeling and map representation
into one mapping system. Such a combination can be
used in urban and rural environments for example to
adapt the robot’s behavior, while inferring from ob-
jects in the vicinity.
With this work, we present a reliable and fast 3D

semantic mapping system. The semantic labeling task
is solved by a pairwise conditional random field (CRF)
classifying 3D point clouds without loss of context in-
formation. This probabilistic classification method is
integrated into an octree-based map data structure.
Prior to classification, the CRF parameter vectors have
to be learned. Then, a wheeled robot gathers succes-
sive point clouds. Creating the map the following steps
are performed:

• Each incoming 3D point cloud is classified by the
CRF.

• Simultaneously, corresponding point clouds are
registered by a SLAM frontend based on the ICP
algorithm and a graph is constructed. This graph
can be optimized continuously by a SLAM back-
end especially after loop closing.

• The registered and classified point clouds can now
be converted into a multi-label and resolution oc-
tree map.

The SLAM frontend and backend are out of the scope
of this paper. In our experimental section, we show the
result of the mapping system on a real-world dataset.
The remainder of this paper is organized as follows.

First, we discuss the related work for point cloud classi-
fication and map representation in Section 2. Then, we
present in Section 3 an extension of the OctoMap data
structure (available at http://octomap.sf.net) model-
ing label probabilities determined with a CRF. The
experiments and results are depicted in Section 4. We
draw our conclusion and point out future work in Sec-
tion 5.

2 Related Work

Two different tasks has to be fulfilled to create a se-
mantic mapping system. On the one hand, a semantic
classification has to be developed. On the other hand,
a suitable data structure for map representation has
to be developed, which is suitable for additional task
settings based on the map and allows the integration
of the semantic labels.
There are different approaches to model the envi-

ronment based on 3D clouds. Popular representations
include point clouds, voxel grids, octrees and surfels.
For semantic mapping, a data structure has to afford
the opportunity to model occupied, free and unknown
space. Furthermore, it should be memory-efficient, al-
low multi-resolutions and the integration of labels. In
the following, only approaches that partially meet the
requirements will be presented. Marton et al. [5] pre-
sented an fast and robust triangulation algorithm for
unorganized 3D point clouds, which can deal with dif-
ferent labels. An approach called OctoMap for model-
ing large scale 3D environments based on octrees using
a probabilistic occupancy estimation was introduced
by Wurm et al. [10]. An extension to hierarchies of
octrees was presented by Wurm et al. [11] with object
labels in different resolutions. The approach cannot
handle different labels in one voxel.
One of the first approaches to classify 3D point

clouds was based on associative Markov networks and
was presented by Anguelov et al. [1]. An extension of
this approach was proposed by Triebel et al. [9], where
the authors showed that adaptive data reduction not
necessarily influences the classification results. A con-
textual classification of 3D point clouds or camera data
using a linear associative max-margin Markov network
approach was presented by Munoz et al. [6]. The au-
thors adapted a functional gradient approach to learn
high-dimensional parameters of random fields in order
to perform discrete, multi-label classification.
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Lim and Suter [4] proposed an adaptive data re-
duction method and used discriminative CRFs for 3D
point cloud classification. They showed that smaller
sets of data samples containing relevant information
within the support region of super-voxels produce sim-
ilar results as using the whole point cloud for classifica-
tion. A classification approach based on pairwise CRFs
to segment terrestrial LIDAR point clouds was pro-
posed by Niemeyer et al. [7]. The approach provides
the opportunity to incorporate contextual information
and learning of specific relations of label classes.

3 Semantic 3D Octree Maps

In the following, we first explain the OctoMap ap-
proach of Wurm et al. [10] and then our extension to
a multi-class CRF based OctoMap. A octree is repre-
senting a hierarchical data structure dividing the 3D
space into spatial subdivisions. The OctoMapmapping
framework is based on octrees and creates a voxelized
3D map for registered 3D point clouds.
Each node of the octree is a cubic volume named

voxel. The whole volume is recursively subdivided into
eight partial voxels with the same size until a minimum
size for each voxel is reached. This minimal size defines
the resolution of the octree. Depending on the robotic
application, the octree of the OctoMap data structure
can be traversed to a coarser resolution.
The occupancy probability P (n|z1:t) of each node n

is estimated using a Bayes filter as

P (n|z1:t) =[
1 +

1− P (n|zt)

P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1

, (1)

where z1:t are all sensor measurements from time point
1 to t. The calculation of the occupancy probability,
adding new sensor data, is performed only for the max-
imum node resolution of the tree.
To obtain a map with different resolutions, the in-

ner nodes nin of the octree can be updated by the cal-

culation of the mean occupancy probability l̂μ or the

maximum occupancy probability l̂max as

l̂μ (nin) = 1

8

8∑
i=1

L (ni) or l̂max (nin) = max
i

L (ni) .

Although, L (ni) is the logOdds of P (ni|z1:t), where
ni is the child of nin.
The presented approach of Wurm et al. [11] incor-

porate different labels into the OctoMap is based on
hierarchies of octrees. For each label and object, a new
OctoMap is created, such that multi-resolution object
maps can be created and objects can be represented
in a finer resolution than less interesting ones. The
different OctoMaps are connected by a tree. The au-
thors assume a precise classification of the point cloud
and do not offer a solution for 3D points with differ-
ent labels in one voxel. A solution for this multi-label
problem in one voxel, with loss of different resolutions
for different objects is presented in the following.
Probability based Multi-Label Octree The def-

inition of the multi-label octree is based on the assump-
tion that we can apply any arbitrary PGM to classify
3D points of a point cloud into different semantic la-
bels. We use a pairwise CRF for classification and the

inference method for super-voxels of Lim and Suter [4]
can be applied to the octree voxels. Here, the probabil-
ity P (n, ymax) of the likeliest class ymax of each node
n can be calculated by

P (n, ymax) = argmax
y

∏
xi∈n

P (y|xi) , (2)

where P (y|xi) is the conditional probability modeled
by the CRF. The probability is estimated for a se-
quence of random variables y of object labels, given
all random variables xi representing 3D points in node
n of the point cloud. To determine the likeliest label for
the inner nodes nin of the octree, the following update
rule p̂ (nin, ymax) is applied:

p̂ (nin, ymax) = argmax
y

8∏
j=1

∏
xi∈nj

P (y|xi) (3)

The conditional probability for each child node nj of
nin is calculated and propagated upwards in the oc-
tree.
CRF based Semantic Object Classification We
use a pairwise multi-label CRF to calculate P (y|x).
CRFs are discriminative undirected graphical models
often applied to sequence labeling problems. The in-
put consists of a fully observed data sequence, e.g. the
features for every 3D point in a point cloud. The
CRF models the relationship between these observa-
tions and assigns a label from a finite set of learned
classes for each given feature. The pairwise multi-label
CRF model is based on [7] and is defined as

P (y|x) =
1

Z(x)
exp

(∑
i∈n

wT
l Φ (fi(x))

+
∑
i∈n

∑
j∈MBi

wT
li,lMBi

Φ (fij(x))

)
, (4)

with the partition function Z(x). In contrast to all
features f of the data sequence x, the association po-
tential Φ (fi(x)) determines the likeliest label yi for
each node in the graph. Φ (fi(x)) and the label se-
quence depending parameter vector wT

l will be calcu-
lated for the number of nodes n in the graph and its
elements i. The interaction potential Φ (fij(x)) and
the corresponding parameter vector wT

li,lMBi
model the

relationship between node i and node j in the graph.
The neighborhood of node xi is defined by the Markov
blanket MBi. For node labels yi and yj of MBi, the
edge feature vector μij is determined by the differ-
ence of the feature vectors fi and fj depending on x.
Similar labels are preferred by the interaction poten-
tial Φ (fij(x)) = δijμij by the Kronecker’s delta δij .
We train the CRF using pseudo log-likelihood training
with an optimization by the L-BFGS algorithm [8]. For
inference, we run loopy belief propagation with resid-
ual message update schedule as proposed in [2] until
convergence.
Graph Downsampling In the literature, point

based CRFs, where each 3D point in the cloud gets
connected to its k-nearest neighbors, yield good and
robust classification results. One drawback is the com-
plexity of the graph structure which leads to expensive
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and slow computations for large point clouds. In this
case, a reduction of the cost was achieved by downsam-
pling the point cloud, which however leads to a loss of
information, especially in the presence of small objects.
In order to keep as much information as possible,

we downsample the point based CRF graph by using a
voxel grid with an adaptive cell size. The basic voxel
grid consists of metrically equidistant voxels in each di-
mension and the nodes are integrated into the voxels.
For each voxel, we compute the center of mass for all
points in the voxel. The center of mass then becomes
a new node in the CRF graph and the other nodes in
the voxel are removed. Since the structure of the voxel
grid is fix, we loose a lot of information, if the bound-
ary of the grid passes through small objects. There-
fore, we perform a merge step, if the Euclidean dis-
tance between neighboring voxel nodes is smaller than
the distance between their geometric voxel centers. We
recompute a new node and the center of mass for the
merged voxels. Now, each voxel gets connected to its
k-nearest neighbor voxel. After the adaptive down-
sampling, the graph is reduced by about 20% of its
original size.
Voxel Descriptor As main feature, we use the

“histogram-of-oriented-residuals” (HOR) operator in-
troduced by Krückhans [3] for facade and ornament
detection. For each node xi of the downsampled graph
and the corresponding 3D point ps, the descriptor de-
termines all points pNj

, j = 1, . . . , n, in a local neigh-
borhood N , by searching for all neighbors in a given
radius in the point cloud. The search radius is ini-
tially fixed, but will be adapted by the adaptive graph
downsampling method such that the merged voxel is
enclosed by the volume created by the radius.
The HOR operator uses the difference between

points and planes, so called residuals, to characterize
local regions in a point cloud. Therefore, m planes
qai = Ra

(
i 2π
m

)
eak

are defined by rotation Ra

(
i 2π
m

)
around axis a with incrementally increased step sizes
i = 0, . . . ,m and the unit vector eak

of a corresponding
axis ak. The residual raiNj

for axis a, step size i and
point pNj

of the neighborhood are calculated as

raiNj
=

〈(
pNj

‖qai‖
−1

)
,

(
qai

−〈ps, eak
〉

)〉
(5)

The first vector of the scalar product is representing
one point of the neighborhood, which is density invari-
ant according to the fourth entry and the second vec-
tor is representing the Hesse normal form of the plane.
The residuals raiNj

are calculated for all planes around
axis a, number of steps m and points pNj

. They are
summarized into histogram ha.
The original descriptor is based on rotation Rz with

ex, summarized in hz , and performs well in separating
the label ground from building. Improving its discrimi-
native strength, we added two additional rotation axes
Rx with ey and Ry with ez to the original descriptor,
such that f (xi) = (hz,hy,hx).

4 Experiments and Results

We tested our semantic multi-label mapping algo-
rithm on the Freiburg dataset.1 The dataset was cap-
tured using a wheeled robot equipped with a SICK

1
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/

Figure 1. A part of the CRF based octree map
with a voxel resolution of 0.4m (best viewed in
color).

LMS laser range finder mounted on a pan-tilt unit
and consists of 77 3D scans capturing an area of
292m× 167m× 28m. Each 360◦ scan was acquired in
a stop-and-go fashion and consists of 150,000-200,000
points.
Results for CRF based Semantic Classifica-

tion The dataset was classified into the semantic la-
bels ground, building, vegetation, column, street lamp
and bollards. The results for each scan of the dataset
were achieved using the adaptive graph downsampling
method with an initial voxel size of 1m× 1m× 1m and
a Markov blanket with 6 neighbors. The search radius
for the extended HOR operator for all neighboring 3D
points of the voxel center was set to 2.5m and the his-
togram for each rotation axis was calculated with 15
bins, leading to a final region descriptor of size 45.
We evaluated the performance of our classifier using

small subsets of the point clouds, representing each
class, to train the CRF model. Point clouds not in-
volved in training where used for classification evalu-
ation. The ground truth was annotated by hand for
the dataset. Ground was classified with a precision
>99%, building with 96%, bollards with 89%, vegeta-
tion with 86% and columns with 72%. Street lamps
reached only a precision of 27% and are often con-
fused with the semantic label building. Less frequently
misclassifications of columns as building or building as
street lamp are present. The approach reaches an over-
all precision for the Freiburg dataset of 96%.
Results for Multi-Label Octree MapsWe evalu-

ated the performance of our CRF based semantic map-
ping approach by measuring the runtime for all pre-
sented algorithms. Therefore, we run the classification
process for the entire dataset five times. A compar-
ison of the runtimes for one point cloud is presented
in Table 1. The HOR calculation includes the down-
sampling time as well as the time for feature calcu-
lation. Creating an original OctoMap data structure
(Equation 1) needs 25.25MB memory for the Freiburg
dataset with a voxel resolution of 0.1m and for the
CRF multi-label octree map (Equation 2) 151.25MB.
A part of the CRF based octree map is presented in
Figure 1 and shows the above mentioned classification
results. The color-coding is wrt. to the ground truth
(light blue = building, dark blue = ground, green =
vegetation, red = column, violet = bollard, yellow =
street lamp). The entire CRF multi-label octree map
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Figure 2. The entire CRF based octree map with a voxel resolution of 0.1m (best viewed in color).

Method Mean Max

HOR calculation 566ms 795ms
Inference 804ms 841ms
Insertion of one point
into the multi-label map

1.9·10−4ms 0.065ms

Creation the complete
multi-label map

2030ms 2163ms

Table 1. Runtime results.

for the Freiburg dataset is shown in Figure 2.

5 Conclusion and Future Work

In this paper we presented an extension of the Oc-
toMap data structure, which offers the opportunity to
create large scale 3D semantic maps in a representa-
tive compact data structure. The semantic classifica-
tion was based on a pairwise CRF with an adaptively
downsampled graph and the scale and density invari-
ant HOR operator as feature. We have shown that the
runtime allows the integration of the semantic classifi-
cation into a robotic mapping system in a stop-and-go
fashion and also achievs a high precision in the clas-
sification. The classification results provide a good
start to incorporate the mapping results for geomet-
rical scene interpretation and e.g. learning new robot
behaviors or developing a path planning based on the
created map.
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