
Automatic Sharp Feature Extraction from Point Clouds with
Optimal Neighborhood Size

Trung-Thien Tran, Sarah Ali and Denis Laurendeau
Computer Vision and System Laboratory, Laval University
1065, avenue de la Medecine, Quebec, G1V-0A6, Canada

trung-thien.tran.1@ulaval.ca, denis.laurendeau@gel.ulaval.ca

Abstract

A novel algorithm is proposed for extracting sharp
features automatically and at optimal scale from point
clouds. First, the vector between a given point and
the centroid of its neighborhood at a given scale is pro-
jected on the normal at this point. This projection is
called the ’projected distance’ at this point. The pro-
jected distance and surface normal vector are recalcu-
lated at several scales for each point. In a second stage,
the projected distance at different scales is analyzed in
order to choose the optimal neighborhood size and up-
date the final projected distance value for the point. Fi-
nally, Otsu’s method is applied to the histogram of the
final projected distances on the cloud in order to select
the optimal threshold value which determines whether
points are on a sharp feature or not. The method has
many advantages such as automatic selection of thresh-
old, optimal neighborhood selection, accurate and ro-
bust detection of sharp features on a wide variety of
objects. To demonstrate the robustness of the method,
it is applied on both synthetic and complex point clouds
with different noise levels.

1 Introduction

Digital scanning devices have been used for vari-
ous applications. Due to the rapid development of
scanning technologies, very large sets of accurate 3D
points can be collected with such devices. Therefore,
more and more applications use these sensors, espe-
cially in industrial manufacturing. Among emerging
problems, sharp feature extraction from scanned data
has recently received much attention from the research
community because this operation is very important
for many operations such as segmentation [1] and sur-
face reconstruction [2]. In fact, most manufactured ob-
jects consist of the combination of common geometric
primitives and the intersections between these primi-
tives can be considered as sharp features.

The existing methods can be classified into two
categories: mesh-based and point-based methods.
Point-cloud processing algorithms [3, 4] have recently
achieved some promising results, and this data type
preserves the original structure of the underlying sur-
face. Generally, sharp features are found at the points
that have a large variation in curvature [5] or discon-
tinuities in surface normal orientation [6]. In addition,
many other techniques preserve sharp features dur-
ing surface reconstruction. The approach proposed by
Daniels et al. [7] used Robust Moving Least Square ex-
tended from MLS to preserve sharp features extracted
from noisy data. Nevertheless, these methods for lo-
cal surface reconstruction are computationally expen-
sive. PCA-based feature extraction methods [8, 9] are

popular approaches. In [9], Pauly et al. calculate sur-
face variation using the PCA technique. However, the
method requires that threshold values be selected for
weighted estimation and global threshold value for fea-
ture extraction. Therefore, this paper proposes a new
algorithm for extracting sharp features automatically
from point clouds with optimal neighborhood size se-
lection and automatic threshold selection.

The rest of this paper is organized as follows. The
sharp feature extraction algorithm is described in Sec-
tion 2. Results and discussion are presented in Section
3, while Section 4 draws some conclusions on the pro-
posed method.

2 Proposed Sharp Feature Extraction Algo-
rithm

A flow diagram of our method is shown in Figure 1.
The 3D data is scanned from the object surface and
yields an unstructured point cloud pi ∈ R3, i=1...N; N
is the number of points. Each block is described with
more details in the following.

2.1 Projected distance

Projected Distance: This value expresses the
structure of the underlying surface supported by the
point cloud. The projected distance DIS(σ, i) given
by Equation 1, is calculated by projecting the distance,
from point pi to its local data centroid pi (the left of
Figure 2), along the normal orientation obtained by
[10].

DIS(σ, i) = abs(
−−−−→
pi − pi.

−→ni) = abs(‖−−−−→pi − pi‖. cos θi)
(1)

where θi is the angle between vector
−−−−→
pi − pi and vector−−−−→

n(σ, i), which is the surface normal at point pi. σ is
the neighborhood size and i is the index of the point.
Angle θi between vector

−−−−→
pi − pi and vector −→ni can be

greater or smaller than 90 degrees, but the projected
distance is always a positive number. That is why the
direction of the normal vector is not considered here as
it is in [10], only the orientation is used in our work.

The basic principle of our method is that the pro-
jected distance is almost zero for points lying on a
smooth point of the surface. However, the projected
distance has a large value if the point is on or close to
a sharp feature. Our method uses this projected dis-
tance to assess whether the point is located on a sharp
feature or not.

To prove this property, three points are chosen from
the fandisk model, shown in Figure 2. These points
are located on a smooth, near-sharp and sharp area,
respectively. Projected distance values for the three

MVA2013 IAPR International Conference on Machine Vision Applications, May 20-23, 2013, Kyoto, JAPAN6-3

165



Figure 1. Overview of proposed method.

Figure 2. Projected distance estimation proce-
dure.

Table 1. Multi-scale projected distances at three
points.

Scale Size Smooth Near-sharp Sharp
8 1.75E-19 1.75E-19 0.518
12 2.78E-19 2.78E-19 0.683
16 2.17E-19 0.028 0.554
20 9.62E-20 0.023 0.621
24 8.92E-20 0.038 0.622
28 2.46E-19 0.076 0.676
32 3.08E-19 0.089 0.668

points are calculated at multiple scales k=(8,12,...32)
and shown in Table 1. From the table, we observe that
all the projected distances of the smooth point (blue)
have a small value close to zero. The values at a near-
sharp point (yellow) are small and less than 0.1, while
they are much larger at a sharp point (red).

2.2 Multi-scale normal vector and projected dis-
tance calculation

If the normal vector and projected distance were
computed for a fixed neighborhood size, the result
would not be accurate. For a small σ, the normal
vector estimation is not stable due to noise. As the
neighborhood size increases, the normal vector and the
projected distance of points near an edge will change
greatly because of the smoothing that occurs near dis-
continuities. Therefore, we have implemented a multi-
scale approach for computing the surface normal vector
and the projected distance, which is shown in Table 1.

2.3 Optimal neighborhood size selection

In this section, projected distance values at multi-
scales σ for each point are analyzed in order to select
optimal neighborhood size. Three points are chosen at
the surface of the fandisk shown on the right in Figure
2.

The ”rate of change” value, which is obtained by
dividing the projected distance at the larger σ by the

Figure 3. Rate of change of three points at multi-
scale.

one at the smaller σ, is defined and shown in Figure 3.
On smooth regions and edge regions on the surface,

the rate of change does not change much with increas-
ing neighborhood size and stays close to 1 (red line
and blue line hidden under red one in Figure 3). In
this case, any scale can be considered as being optimal
for this point, but σ = 16 is chosen as the best and is
used in some papers [11].

At the point close to an edge, the rate of change
varies greatly and rises up to 1017 (yellow line in Fig-
ure 3); it jumps significantly between neighborhood
sizes 12 and 16. In this case, σ = 12 is considered
as the optimal neighborhood size for this point. From
this analysis, we propose an algorithm (Figure 4) for
choosing the optimal scale.

In the Figure 4, s is the number of rate of change. ε
expresses the sudden change in distance between two
adjacent scales and does not affect the performance

Figure 4. Pseudo code for optimal neighborhood
selection.

166



Figure 5. Sharp feature extraction process.

much as it changes little in value. peak is the position
at which a sudden change occurs.

The above algorithm provides the optimal neighbor-
hood size for each point, so the normal vector and the
projected distance are computed reliably at each point.
The projected distance at that optimal size is taken as
the final value for this parameter.

2.4 Automatic threshold selection

Once the final value of the projected distance is ob-
tained, we need to determine the optimal threshold
value to extract sharp features from the point cloud.
In our paper, the well-known Otsu’s method [12] is
applied.

The final projected distance is normalized in the in-
terval [0, 1] shown on the left of Figure 5. Blue dots
correspond to smooth regions on the underlying sur-
face, while green and red dots correspond to potential
edges and corners on the underlying surface. Final
projected distance values are rearranged in order of in-
creasing value between 0 and 1, and the histogram is
created as the input for Otsu’s method (middle of Fig-
ure 5). The threshold value is located at the red line
(middle of Figure 5). The results are shown on the
right of Figure 5.

3 Experimental Results

To illustrate the efficiency of our method, we have
tested it on complex models corrupted by different
noise levels. Moreover, the results provided by our
method are compared with some other methods such
as mean curvature, normal and Pauly’s method [9].

3.1 Results obtained on different objects with
complex shapes

As mentioned previously, differential geometry in-
formation (ie. curvature and normal) is often used in

Figure 6. Results for various point cloud datasets.

feature extraction. Therefore, mean curvature and nor-
mal difference between points are calculated. Pauly et
al. [9] used surface variation, which is calculated as
the division of the smallest eigenvalue by the sum of
all eigenvalues of its neighborhood as the criteria for
feature extraction. To show the advantage of using
the projected distance proposed here, our automatic
threshold selection approach is applied for Mean Cur-
vature, Normal and Pauly’s methods because these
methods require that this threshold value be chosen
by the user. The output uses graphics rendering and
sharp features are displayed as red dots.

Observing Figure 6 clearly indicates that the method
proposed can detect edge features very sharply. Mean
curvature, normal and Pauly’s methods rather detect
thick features including many potential feature points.
Even Pauly’s method fails to detect the feature at the
bottom of the trim-star (blue circle in Figure 6).

Thus, our method provides better results due to
optimal neighborhood selection, so that reliable nor-
mal vectors are computed. The projected distance for
smooth and near-edge points is much smaller than that
of sharp features. Hence, the feature lines are thinner
and more accurate.

Figure 7 shows the results obtained by manually tun-
ing different threshold values for Pauly’s method. With
small threshold values (0.15 or 0.2), the results consist
of thick sharp feature lines. With large threshold val-
ues (0.25 or 0.3), the approach misses some part of
the sharp features (red ellipse in Figure 7) and also
contains wrong feature points (blue circle in Figure 7).
However, the results from our proposed method are
accurate and clear even without tunning the threshold
values. More results for complex models are shown in
Figure 9.

3.2 Results for different noise levels

To illustrate the robustness of our method to
noise, some results for a noisy fandisk are presented.
Gaussian noise with zero mean and standard devia-
tions of 1%, 2% and 3% of the average distance be-
tween points was added to data point. Figure 8 shows
that good results are obtained for 1% , 2% and 3%

Figure 7. Results with tuning different threshold
values for Pauly’s method.

Figure 8. Results for different noise level of fan-
disk dataset.

Table 2. Number of detected sharp features on
the cube model by 4 methods.

Normal Curvature Pauly Our method
236 247 134 91

167



Figure 9. Sharp features extracted from point cloud models

Table 3. Timing of our proposed method for point cloud models.
Point data Input points Normal estimation Projected distance Total time (s)

Cube 386 0.022 0.017 0.055
Trim-star 5192 0.312 0.247 0.687
Fandisk 6475 0.382 0.301 0.847
Joint 50000 3.037 2.35 6.885

noise and only a small part is contaminated by wrong
feature points as in Figure 8.

Moreover, the accuracy of the proposed method is
shown in Table 2. A synthetic cube point cloud has
386 points with 91 sharp features. Mean, normal
and Pauly’s method detect many wrong sharp features
while our method extracts 91 sharp features correctly.

The computation time using MATLAB in a 3.2 GHz
Intel Core i7 platform for every step of the proposed
method is given in Table 3. Our method is remarkably
fast and can be applied to large point clouds.

4 Conclusion

A new algorithm is proposed for extracting sharp
features automatically on point clouds with optimal
neighborhood size. First, the projected distance is cal-
culated at multiple neighborhood sizes. Then, the pro-
jected distance values are analyzed to find the optimal
neighborhood size and update the final projected dis-
tance for each point. Finally, an optimal threshold
value is determined automatically using Ostu’s method
to decide whether the point is on a sharp feature or
not. Many experiments have been conducted in order
to show that the method works well for various objects
with complex shapes.

Acknowledgements

The authors thank the AIM@SHAPE Shape Reposi-
tory for making models available. This research project
was supported by the NSERC / Creaform Industrial
Research Chair on 3-D Scanning.

References

[1] Stylianou G, Farin G. Crest lines for surface
segmentation and flattening. IEEE Transac-
tions on Visualization and Computer Graphics
2004;10(5):536–44.

[2] Kuo CC, Yau HT. A new combinatorial ap-
proach to surface reconstruction with sharp fea-
tures. IEEE Transactions on Visualization and
Computer Graphics 2006;12(1):73–82.

[3] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin
D, Silva CT. Point set surfaces. In: Proceedings
of the conference on Visualization ’01. VIS ’01;
Washington, DC, USA: IEEE Computer Society;
2001, p. 21–8.

[4] Amenta N, Kil YJ. Defining point-set surfaces. In:
SIGGRAPH 2004. New York, NY, USA: ACM;
2004, p. 264–70.

[5] Demarsin K, Vanderstraeten D, Volodine T,
Roose D. Detection of closed sharp edges in point
clouds using normal estimation and graph theory.
Comput Aided Des 2007;39(4):276–83.

[6] Merigot Q, Ovsjanikov M, Guibas L. Voronoi-
based curvature and feature estimation from point
clouds. IEEE Transactions on Visualization and
Computer Graphics 2011;17(6):743–56.

[7] Daniels II J, Ochotta T, Ha LK, Silva CT. Spline-
based feature curves from point-sampled geome-
try. Vis Comput 2008;24(6):449–62.

[8] Gumhold S, Wang X, Macleod R. Feature extrac-
tion from point clouds. In: Proceedings of the
10 th International Meshing Roundtable. 2001, p.
293–305.

[9] Pauly M, Keiser R, Gross M. Multi-scale feature
extraction on point-sampled surfaces. Computer
Graphics Forum 2003;22(3):281–9.

[10] Hoppe H, DeRose T, Duchamp T, McDonald J,
Stuetzle W. Surface reconstruction from unor-
ganized points. In: Proceedings of the 19th an-
nual conference on Computer graphics and inter-
active techniques. SIGGRAPH 1992; New York,
NY, USA: ACM; 1992, p. 71–8.

[11] Weber C, Hahmann S, Hagen H. Sharp feature
detection in point clouds. In: Shape Modeling
International Conference (SMI ’10). 2010, p. 175–
86.

[12] Otsu N. A Threshold Selection Method from
Gray-Level Histograms. IEEE Transactions on
Systems, Man, and Cybernetics 1979;9:62–6.

168


