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Abstract 

This study developed a face hallucination system based 
on a novel two-dimensional direct combined model 
(2DDCM) approach that employs a large collection of 
low-resolution/high-resolution facial pairwise training 
examples. The proposed 2DDCM approach achieves face 
hallucination by addressing three key issues. First, we 
directly combine each low-resolution and high-resolution 
pairwise image in a concatenated form in order to com-
pletely preserve their relationship. Second, images are 
formed as two–dimensional matrices instead of vectors 
in order to preserve the facial geometry. Third, both the 
vertical and the horizontal facial-geometry features are 
considered in 2DDCM approach. Experiments demon-
strate our approach can synthesize high quality 
reconstructed facial images from given low-resolution 
images. 

1. Introduction 

The need for face hallucination, i.e., reconstructing the 
high-resolution facial image from a given low-resolution 
image, is present in many computer vision and multime-
dia applications. For example, the task of recognizing 
faces in a video [1, 3] using reconstructed high resolution 
facial images may improve the facial recognition rate or 
at least aid the recognition task. Unlike other super reso-
lution approaches proposed in [4, 8, 13], where the 
targeted images are without any particular structure, the 
images processed in the face hallucination framework 
consist of common facial structures (e.g. the eyes and 
nose). Consequently, we propose a two-dimensional di-
rect combined model (2DDCM) approach for face 
hallucination with the help of a set of 
low-resolution/high-resolution facial pairwise training 
examples in order to learn facial structures. 

Naturally, the effectiveness of face hallucination de-
pends on the accuracy of the underlying transformation 
between the low- and the high-resolution facial images. 
Accordingly, the proposed 2DDCM approach addresses 
the following three distinguishing characteristics for the 
derived transformation of face hallucination: (1) Com-
pared to existing independent model approaches [6, 9, 
10], the relationship modeled by the combined formula-
tion method [2, 5, 12] is more flexible and completely 
reveals their primary facial properties. Consequently, the 
2DDCM approach directly couples each pairwise exam-
ple in a combined formula in order to completely 
preserve their correlation. (2) Inspired by approaches in 
[11, 14], we apply the 2D matrix image representation in 
the proposed 2DDCM approach. Compared to the con-
ventional pixel-based vector image representation, the 
2D matrix image representation doesn’t destroy facial 

structure and provides significant help for further ana-
lyzing the vertical and horizontal facial structures. (3) 
The pairwise training examples in 2D combination rep-
resentations are then used for deriving the transformation 
of face hallucination. Such transformation synthesizes 
quality reconstructed faces by emphasizing the facial and 
the horizontal characteristics; these characteristics are 
important, but have been given less emphasis in previous 
literature, e.g. [5, 6, 7, 9, 10, 11]. 

2. Two-dimensional direct combined model 

Our method for deriving the transformation of face 
hallucination starts with a novel representation, 2D com-
bination formulation, of two related classes. In the 
current scenario, one class is the set of low-resolution 
facial images L, and the other class is the set of their 
corresponding high-resolution facial images, H. Assume 
there are K training pairwise examples, 

1 1 2 2{( , ), ( , ), , ( , )}K Kl h l h l h� , where each image of the 
pair is a random vector of the class L or H. Consider now 
each image (li or hi) are M × N pixels (li is up-sampled to 
the same size as the targeted high-resolution image hi). 
To better preserve the geometric properties of faces, such 
as the symmetry of the facial structure or the relative sizes 
of facial features, we then define the M × N facial image 
as a M × N random matrix, i.e., li is represented as a matrix 
form L

iA  and the matrix form of hi is H
iA . Further, to 

carefully preserve the pairwise correlation, the i-th pair-
wise training example, ( , )i il h , is formulated by 2D 
combination representation iA .with size 2 2M N� : 

2 2

L H
i i

i H H
i i MX N

A A
A

A A
� �

� � �
� 	

, (1)

where upper M rows of iA  correspond to the 
low-resolution class, L , and the lower M rows of iA
correspond to the high-resolution class, H. The last N 
columns of iA  are the augmented matrix for the pair of 
( H

iA , H
iA ), i.e. we constrict the image resolution of class 

L to its high-resolution version in (1). 
To better expose vertical and the horizontal character-

istic features of these K training examples, we extracted 
two feature spaces U and V, where the variance of all 
training 2D combination matrices, 1 2{ , , , }KA A A�  on 
these two spaces is maximized. Such covariance matrix 
is defined as: 

,
1

1 [ ][ ]
K

T T T
U V i i

i
C U A V U A V

K �

� 
 
�  (2) 

where iA
  denotes the unbiased matrix of iA , i.e. 
i iA A A
 � � ; A  is the mean matrix of all training 

matrices. 
Using the matric trace ,( ) ( )T T T

U Vtr C tr V A UU AV� 
 

( )T T Ttr U AVV A U� 
 
 , spaces U and V in (2) are solved 
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