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Abstract

The interest on acquiring player and ball data dur-
ing soccer games is increasing in several domains such
as media or training. Consequently, tracking systems
are becoming widely used for live data gathering. How-
ever, due to costs, stadium infrastructure, media rights
etc. there is a trend for stand-alone mobile low-cost
soccer tracking systems. The drawback of such sys-
tems is that generally only low-resolution images of
the players are available. Thus, the problem of detec-
tion and tracking the soccer ball is also strongly exacer-
bated. This paper presents a novel approach for 3D re-
construction of the ball trajectory from monocular low-
resolution soccer image sequences. The ball detection
is done on accumulated motion-segmented binary im-
ages by extracting shape-validated ball candidates from
these so-called motion history images. Then, robust
ball tracklets are extracted from the motion history im-
ages and used to reconstruct the ball 3D trajectory
based on physical characteristics and calibration infor-
mation. The approach is tested on a Bundesliga data
set: the tracklet extraction and the ball trajectory re-
construction are evaluated.

1 Introduction

The increasing professionalization of soccer is ac-
companied by a growing media attention as well as
game analysis and professional training. Especially the
automation of live analysis of soccer games is interest-
ing for several domains such as media or training. How-
ever, the automation presupposes a robust acquisition
of player and ball data that still relies heavily on the
interaction of operators (so-called scouts) in current
systems. Live acquisition of quantitative motion data
such as distance covered by players or ball possession
can only be done by sophisticated automation. Our
overall tracking system provides this kind of quantita-
tive data for supporting a scout and for the automated
acquisition of the relevant data [1]. It automatically
detects, classifies and tracks the ball, the 22 soccer
players, the referee and the two linesmen in one image
sequence of double Full HD resolution.
The main contribution of this work is the acquisi-

tion of the ball trajectory based on ball detections.
Detection of the ball in image sequences generally is
a difficult task as appearance of the ball varies from
image to image. For instance, the high accelerations
occurring at the ball may cause motion blur so that the
appearance of the ball is then more of an ellipse than
a circle (see some examples in Fig. 1). Also, the color
of the ball may be vary from image to image because
of changes of the illumination conditions or it has the
same color as the lines of the pitch which exacerbates

Figure 1. Variety of the ball’s appearance. All
samples are extracted from one image sequence.

the ball detection task. Another challenge is the im-
age resolution of the ball which is usually very small so
that also confusions with body parts may occur. De-
pending on the camera perspective, the ball is in front
of a complex image background such as the audience
which exacerbates its detection as well. Besides diffi-
culties that arise from the appearance of the ball by
itself, the detection of the ball is very challenging in
situations where it is occluded by the players.

The approach presented in this contribution is appli-
cable for static camera systems, even for low-resolution
cameras. So it can be used in huge tracking systems
consisting of several cameras usually fix installed in
stadiums as well as for low-cost camera systems that
generally consist of 1-3 cameras capturing the entire
pitch.

There are a couple of publications for detecting and
tracking the soccer ball [4]. However, many of them
tracking the ball in broadcast soccer videos. One ap-
proach processing images from static cameras and us-
ing accumalated foreground segmented images as well,
is presented in [3]. After the foreground is segmenetd,
connected foreground regions being too large for a ball
are deleted and accumulated with the last n segmented
images. The accumulated image is then used to find
the initial ball position and for density estimation of
ball hypotheses for tracking the ball by using partical
filtering.

For 3D reconstruction of the ball trajectory, the cal-
ibration information describing the relative position
and orientation of the camera relative to the soccer
field plays an important role [6, 2]. While multi-camera
solutions just need the ball tracks from different cam-
era views to be able to reconstruct the 3D trajectory
[7, 9], single camera applications mostly assume phys-
ical models like parabolas for the 3D reconstruction
[6, 2]. Especially the points where the ball touches
the ground are critical information for estimating the
models [7, 6, 2]. Unlike tracking applications for volley
ball games [2] or golfing [9], in the soccer scenario we
have to deal with lots of occlusions (where the tracked
ball merges with players) and incomplete data in terms
of missing ball trajectory points. In our approach, we
do not need to specifically determine the end points
of the parabola a priori. Furthermore, we determine
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Figure 2. Sample snapshot of the processed input image sequence including detected ball tracklets (top) and
one for the according motion history image (bottom).

those points implicitely and hence segment the ball
trajectory by estimating the physical motion model.
In this contribution, a novel approach for detecting

the ball and reconstructing its trajectory in monocu-
lar low-resolution soccer image sequences is presented.
Ball candidates are first detected in motion-segmented
binary images by size and validated by analyzing their
shape. Candidates that are not confirmed due to their
shape are removed from the binary images. Then, the
binary images with the remaining and validated ball
candidates are accumulated to a motion history image
(MHI), where latest images are additionally weighted
higher.. Finally, the reconstruction of the ball trajec-
tory is made by a physically motivated model-based
approach based on the linked robust ball tracklets ex-
tracted from the MHI.
The contribution is structured as follows: in Section

2, the module for the ball detection is proposed. Then,
the calibratin of the cameras is described in Section 3
and the reconstruction of the ball trajectory in Section
4, before the results are shown in Section 5.

2 Ball detection

A reliable soccer ball detection simplifies the ball tra-
jectory reconstruction obviously. Therefore, the false
alarm rate of the detections should be kept low. How-
ever, because the ball is the main object of interest
there are a lot of occlusions and the changing appear-
ance of the ball makes this task difficult. In order to
achieve a high detection rate at a low false alarm rate,
we follow a detection approach that has been widely
established: we divide the detection task in two steps.
First, ball candidates are extracted followed by an add-
on verification of them.
After image acquisition, the soccer ball has to be

detected first. Due to the real-time constraint, a
feature-based detection with e.g. a sliding windows
approach cannot be used. Instead, as the images are
captured by a static camera, a detection of ball candi-
dates is performed by foreground/background segmen-
tation first [5]. Temporal static background like the
pitch and marking lines are segmented as background,
whereas moving objects generate changing appearance
and therefore foreground segmentation. During the
ball candidate extraction, all foreground regions are
extracted and checked for its size using calibration in-
formation of the cameras. Foreground regions that are
no candidates for the soccer ball due to their size are
removed.

At the second step, external contours of the remain-
ing regions are extracted as a sequence of points and
analyzed . First, an ellipse is fitted to the sequence and
the mean squared error between every sequence point
and the ellipse is calculated. Ball candidates with a
high mean squared error are removed. Using ellipses,
deformations of the ball due to, for instance, offsets in
camera synchornization can be handled. The remain-
ing candidates are kept as verified foreground regions in
the foreground/background segmented image. Then, a
dilatation is applied and the last n binary images are
accumulated to a MHI of verified ball candidates, be-
fore the tracklets are finally extracted from it (see Fig.
2).

3 Calibration

In order to be able to determine the position of
the ball and the players on the pitch as well as the
height of ball tracks, we calibrate the cameras intrin-
sically and extrinsically [8]. For the extrinsic cali-
bration the soccer field itself is used, as the size of
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Figure 3. The calibration parameters can be used
to determine the correspondences between image
points and points on the ground of the playing
field, and based on those ground points, the 3D
height of an image point.
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Figure 4. 2D ball tracklets in the image plane. a.
Scheme of the relationships to determine the tem-
poral consistency for both, the parabola and the
line model. b. The peak of the parabola is de-
tected by vertically sweeping along the parabola.
The maximum distance between line l and the
parabola p indicates the peak.

the pitch and lengths of lines are usually well known.
Hence, as a result we get the camera matrix P3×4 =
(pT

1 ,p
T
2 ,p

T
3 )

T = (pij) which describes the projection
of a 3D point onto the image plane in homogeneous
coordinates: x̃ = PX̃ with x̃ = (xT , 1)T = (x, y, 1)T

and X̃ = (XT , 1)T = (X,Y, Z, 1)T . Furthermore, we
can determine the homography H3×3 that maps pixel
coordinates in the image onto 2D coordinates of the
playing field: (XF , YF , 1)

T = Hx̃ (see Fig. 3).

4 3D trajectory reconstruction

We start with a list of tracked ball positions and try
to decide which points of the recent trajectory belong
either to a pass (ball remains on the ground) or a cross
(ball is in the air) or nothing of both. In the latter case
we assume a parabola as the underlying model of the
ballistic trajectory of the ball.
The trajectory of length N can be incomplete due

to missing detections or occlusions. So, we iteratively
check track segments of length Nk starting with the
latest trajectory point and increasing the segment by
sequentially adding points from the past. Hereby, we
evaluate the segment regarding the line model and the
parabola model. In a first step, we estimate the model

parameters (al, bl)
T for a line and (ap, bp, cp)

T for a
parabola with

y = alx+ bl =: ρl(x) and
y = apx

2 + bpx+ cp =: ρp(x).
(1)

Using the 2D points from the current trajectory seg-
ment we can formulate an overdetermined linear equa-
tion system and solve for the model parameters. Af-
terwards, we check for the temporal consistency of the
segment. This means, that according to the calcu-
lated model the order of the points must be sequential
and the temporal appearances of ball detections x at
time t must be consistent. Therefore, we assume lin-
ear motion of the ball along the estimated trajectory
model, which leads to the following condition for tem-
poral consistency of two consecutive trajectory points
x(ti),x(ti+1) in a segment of length Nk for a line and
a parabola respecively (see Fig. 4. a):

∥∥∥∥Δt
‖x(t1)−x(tNk

)‖
2

ΔT −ΔSl

∥∥∥∥
2

− τ(Δt)ΔSl

!
< 0

∥∥∥∥Δt
〈x(t1),x(tNk

)〉
p

ΔT −ΔSp

∥∥∥∥
2

− τ(Δt)ΔSp

!
< 0

(2)
with

Δt = ti − ti+1,
ΔT = t1 − tNk

,
ΔSp

= 〈x(ti),x(ti+1)〉p ,
ΔSl

= ‖x(ti)− x(ti+1)‖2 and
τ(t) = αt2.

(3)

The neglect of air resistance will be payed attention by
introducing a tolerance function τ(t) with a tolerance
factor α, which allows deviations from the model de-
pending on the temporal duration of the track segment.
We choose a square function to be able to also cover
rolling balls that continously reduce speed and hence
slowly moving towards a rigid position. The lengths
of the parabola segments are approximated by a piece-
wise segment accumulation:

〈x(t1),x(t2)〉p =

ΣL
i=0

∥∥∥
(

x1+iΔx
ρp(x1+iΔx)

)
−
(

x1+(i+1)Δx
ρp(x1+(i+1)Δx)

)∥∥∥
2

(4)

with Δx = |x(t1)−x(t2)|
L and L sample points.

This iterative model estimation and evaluation will
be repeated until the longest possible segment is found
that fits a model. If a segment fulfills both conditions
for a line and a parabola, we choose the line model. If
only the parabola model is valid, we continue estimat-
ing the parabola model in the following time steps until
a new model is found, which means that we have de-
tected a complete parabola trajectory segment. This
is important as for the height estimation of the 3D
parabola we need the complete parabola with its two
end points and not just a piece in between. In cases of
too strong occlusions (e.g. after a corner kick) it may
happen that no model can be applied.

Once we detected a complete parabola segment we
continue estimating the height of it. Therefore, we use
the calibration information. Assuming that we know
the two end points of the parabola in the image, we can
determine the line l that goes through these two points.
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Figure 5. 3D parabola model of the ball trajec-
tory based on the estimated height h of the ball
trajectory and the end points.

By vertically sweeping through the parabola segment,
we determine the parabola peak xh to be the point
where the vertical distance between l and the parabola
is maximal (see Fig. 4. b). The respective point on l
is x⊥. As we know the point x⊥ in the image plane
and the calibration parameters, we can calculate the
corresponding point on the soccer field X̃F = Hx̃⊥.
Now, given a ball with its coordinates over ground
XF = (XF , YF )

T , we are looking for the height h that
best describe the projected point xh. Based on the
projection equation x̃h = P(XF , YF , h, 1)

T from Sec-
tion 3, we can solve for h with

h =
yhp

T
3 Ỹ − pT

2 Ỹ

p23 − yhp33
. (5)

with Ỹ := (XF , YF , 0, 1)
T . Finally, given the height

h and the bordering end points XB ,X
′
B in the ground

plane, the 3D parabola of the ball trajectory in a plane
π orthogonal to the ground plane (determined by the
the end points and the normal (0, 0, 1)T ) can be ap-

proximated by ρπ(d) = d2+aπd+h with aπ = −D2−4h
2D

and D = ‖XB −X′B‖ (see Fig. 5).

5 Results

We tested the proposed approach on a data set of
a Bundesliga match. It consists of an image sequence
with about 140.000 images of double Full HD reso-
lution (see Fig. 2 for an example). There are 1428
tracklets to detect, in situations where the ball is not
occluded or not merged with a player. The approach
detected 1343 tracklets and missed 85. There was no
false alarm, i.e. all detcted ball tracklets were correctly
deteced as such.
The accuracy of the estimated height of the ball

strongly depends on the accuracy of the estimated ball
positions where the ball touches the ground. Further-
more, due to the low resolution of the video material,
we are not able to automatically determine if a ball
moves back in the air before it touches the ground
(e.g. a header). As we did not have ground truth
for the actual ball height, we used the hand-labeled
ball trajectories to verify the correctness of the deter-
mined ball segments. We could observe a very satisfy-
ing segmentation in the majority of the scenes. How-
ever, we could also observe false positives, which means

we over-segmented a ball trajectory, in the following
three situations: First, when the ball is highly passed
almost parallel to the center line from far to close or
vice versa. Second, when the assumed parabolic mo-
tion model does not meet the true ball motion, e.g.
due to air friction or ball spin. And third, when the
tracklets were too fractured, e.g. when the distance
between the players and hence the length of the passes
is very short.

6 Conclusion

In this paper, an approach for 3D trajectory recon-
struction of the ball for monocular low-resolution soc-
cer image sequences has been presented. We could
yield a reliable extraction of ball tracklets and estima-
tion of the position of the ball on the pitch as well as
its height estimation in 3D space. Furthermore, by us-
ing a motion history of the ball and a physical motion
model, we could implicitely segment the motion his-
tory of the ball into straight passes on the ground and
high crosses. With the exception of the delay in the
output of the ball coordinates, which depends on the
length of the motion history, the proposed approach is
real-time capable.
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