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Abstract

In this paper, a scene analyser is introduced which
is based on Ransac (Random Sampling Consensus).
This scene analysis approach is developed for robotic
applications in particular, where poses of objects need
to be estimated accurately that robots can grasp ob-
jects reliably. For assembly or manipulation purposes
even an approximate pose estimation is not sufficient.
For many objects appearance based similar poses exist,
which influence the assembly strategy strongly when ob-
jects are gripped. Thus, robust pose estimation is re-
quired which is achieved by using triple point feature
hash maps. This new feature vector is compared to two
other feature vectors obtained from point pairs. It is
shown that object poses can be estimated more precisely
with roughly equal computation times with the new fea-
ture vector. Furthermore, in order to increase stabil-
ity, symmetries are exploited and included into the en-
tire scene analysis pipeline. The pipeline of the intro-
duced scene analysis approach is illustrated and eval-
uated with various scenarios. The method presented
here is successfully used for assembly applications.

1 Introduction

Interpretation of complex scenes and pose estima-
tion of known objects is one of the main topics in com-
puter vision for robotic applications. In industrial sce-
narios, in particular for assembly, often model data
are available whereas in service scenarios model data
are rare, but in every case one can think of a data
base in which all these models are available. Hence
the problem remains to match model information into
3D scenes. Nowadays 3D point clouds can be ac-
quired easily by appropriate sensors like time-of-flight
sensors (Swissranger SR 4000 or PMDs CamCube),
Kinect-Sensor or passive stereo systems. Through-
out this paper 3D point clouds are denoted by its
point sets P := {p1, . . . ,pn} and its surface normals
N = {n1, . . . ,nn}, which can be obtained by princi-
ple component analysis of its neighbour points. Pose
estimation in general is equivalent to matching the
correct model into the scene, more formally it is de-
scribed by estimating the correct pose Θ := (R, t) with
R ∈ SO(3) and t ∈ R

3 which fits best into the point
cloud P such that

∑
pi∈M || pi−p�

i ||2 is minimized un-

der certain constraints (e.g. collisions, physics) where
pi is a model point and p�

i is its closest scene point.
For pose estimation many Ranac or Prosac (pro-

gressive sampling consensus) approaches exist. Ransac
is deeply investigated and can easily be implemented
[4], [1]. Two key issues arise: How to draw samples
and how to evaluate hypotheses. Moreover the genera-
tion of hypotheses is critical. Many feature descriptors

for 6D pose estimation exist. Some of them are (fast)
point feature histograms (PFH and FPFH) [9] [10],
surflet pair relation tables [12] or point triplets. Their
usage for pose estimation regarding accuracy is evalu-
ated in [5]. All these features have been used widely in
combination with Ransac for pose estimation in robotic
applications [8], [2], [3]. For matching surfaces of bro-
ken pieces or registration of laser-scanner data from
different viewpoints an approach applying the birthday
attack is described in [13]. Ransac is implemented for
finding shape primitives in point clouds [11]. Among
the above mentioned feature descriptors spin images
are introduced [6] or three-dimensional Tensors are ap-
plied for registration [7].

In this paper, a generic scene analysis approach is
described. The image processing pipeline is illustrated
in the next section. Section 3 discusses three different
feature descriptors which are evaluated in this paper.
The following section shows the Ransac step, namely
the generation and evaluation of pose hypotheses. The
later section contains the evaluation part, where real
robotic scenarios are analysed regarding recognition
rates. The paper is concluded in section 6.

2 The Image Processing Pipeline

For pose estimation and scene analysis a general ap-
proach is developed. Fig.1 illustrates the image pro-
cessing chain. First the model data is hashed regard-
ing the selected hash function and the applied feature
descriptors. Among triangle meshes of object surfaces,
the model data contain dense 3D surface points with
their normals. The feature vectors are generated in ad-
vance. During runtime the 3D point cloud is acquired
and surface normals are estimated. In this step, mul-
tiple images can either be registered and fused to a
single unstructured point cloud, or one single image
is used represented in each case by a 3D point cloud.
At next, segmentation is applied. Here, an Euclidean
algorithm is used. Ideally, each segment contains a sin-
gle object. After segmentation the Ransac step follows,
where each segment serves as a data pool for drawing
pairs of points or triplets of points according to the
used feature descriptors. Based on the gained hypothe-
ses an evaluation step follows, where many hypotheses
are rejected. This can either be done by pose cluster-
ing as in [3] or by other evaluation functions. Here cost
functions are applied as filters to reject bad hypotheses.
Ambiguous hypotheses are ignored and the remaining
hypotheses are used to generate symmetrically equal
hypotheses again, which are finally evaluated.

3 Feature Vectors

Pairs of points become very popular as feature vec-
tors, because they can be computed very fast in point
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Figure 1. The image processing pipeline of the implemented scenen analyser.

clouds, where normal vectors of surfaces are available.
Based on such features a hashing function is commonly
applied to sort each feature vector into a bin. The more
non-ambiguous such functions are, the more efficient
the search for good hypotheses is. Certainly the opti-
mum is a one to one mapping in between features and
hypotheses, but this is not feasible. To this end various
features and hash functions can be applied. Here, fol-
lowing features are evaluated and implemented in the
image processing pipeline.

Surflet Pairs (SP): Fig.2 illustrates the surflet
points pairs as feature vector. This vector is also
used in [12], [13],[8]. Given two points denoted as
pi and pj with their respective surface normals ni,
nj and their distance dij := pi − pj , the feature
vector is obtained by:⎛
⎜⎝

|| dij ||
∠(ni,dij)
∠(nj ,dij)

atan2( ni · (dij × nj), (ni × dij) · (dij × nj))

⎞
⎟⎠
(1)

PF : Point Feature histograms are known from [9] and
denoted as: ⎛

⎝ || v · nj ||
u · pj−pi

||pj−pi||
atan2(w · nj ,u · nj)

⎞
⎠ (2)

where u,v,w are given by the Darboux-Frame co-
ordinate system chosen at point pi[10]. If only
those features are used whose point’s distances
are smaller than a threshold r the authors name
it FPFH (fast point feature histogram). Here, in
contrast, this vector is used for hashing, and we
denote these features point features (PF), because
of its locality.

Triple Points (TP): Point triples are evaluated
in [5], but the feature vector differs from the one
implemented here. The fourth and fifth dimen-
sions are used to obtain much less ambiguity. In
addition to the two given points mentioned above
a third point pk is chosen, hence the feature vector
is denoted as:⎛
⎜⎜⎜⎝

|| dij ||
∠(ni,dij)
∠(nj ,dij)

atan2(ni · (dij × nj), (ni × dij) · (dij × nj))
∠(pi − pk,pj − pk)

⎞
⎟⎟⎟⎠
(3)

All three feature vectors are implemented and evalu-
ated against each other. The first two representations

are well known, whereas the third is a new feature vec-
tor used in this paper. As it can be seen in the evalu-
ation section it improves accuracy for pose estimation
and leads to much more stable results.

Figure 2. The feature used for hashing. Accord-
ing to SP, PF or TP two or three points are used
to generate the feature vector.

Beside the feature vector an important issue is the
mapping into the hash map. The optimal hashing will
result in equally sized bins. Here the angular resolution
is set to 5◦ for each bin and the translational resolution
is set to 3mm regarding the sensor resolution. The
maximum translational distance is obtained from the
maximum distance εmax between two object points and
a minimum value εmin which is restricted to a third of
the εmax. For the point feature vectors (PF) r = εmin

is chosen as radius for the neighbours in order to avoid
inserting too many point pairs.

4 Hypotheses Generation and Evaluation

Like in each typical Ransac implementation, the key
steps are how to draw samples and how to evaluate
hypotheses. Usually it is worse to reject hypotheses
as early as possible in the processing pipeline. Thus,
the non-ambiguity in the hash map is an important is-
sue discussed in the last section and secondly drawing
samples from the scene which leads to good hypotheses
speeding up the entire scene analysis approach. There-
fore, following steps for hypotheses generation, filtering
and evaluation are implemented:

1. For all objects estimate εmin and εmax which serve
well as maximum distance for drawing point pairs
or point triples.

2. For each segment do: Drawing one point pi of the
point cloud P = {pi . . .pn} at random. Draw-
ing a second and a third point out of a ball with
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the radius given by either εmax or by r (for point
features) according to the matching model.

3. For the drawn point pairs or point triples compute
the feature vectors either f(pi,pj ,pk) or f(pi,pj)
and try to find corresponding entries in the hash
maps. Let Hk be a set of hypotheses for object k
in the corresponding bin, then determine for each
hypothesis the alignment for rigid motion with R
and t, see Fig.2. This pose hypothesis Θ := (R, t)
can be alignment with:

tΔ = −pB
i −

pB
j − pB

i

2
+ pA

i +
pA
j − pA

i

2
(4)

and the rotational part is obtained by

RW
F :=

(
dij

||dij ||
dij×(ni×nj)
||dij×(ni×nj)||

(dij×ni×nj)×dij

||(dij×ni×nj)×dij ||
)

(5)
By this, the estimated pose can be calculated with
respect to the world’s reference system by RW

A ·
RW

B
−1 leading to Θ, which is inserted into Hk.

4. Now, hypotheses for all objects are collected in
H := ∪∀kHk and evaluated with two different
functions. The first one indicates how well the ob-
ject matches into the scene and with the second
function one obtains a quality measure how proba-
ble the hypothesis is regarding the viewpoint. The
first cost function is denoted as

1∑
pi∈Pseg

∑
pi∈Pseg

g(pi) with (6)

g(pi) =

{
1 if min∀pj∈M{|| pj − pi ||} < ε

0 otherwise

(7)
and the second cost function is given by assuming
the view direction with v. Then for the quality of
a hypothesis Θ = (R, t) follows

1∑
pj∈M |pj ·v>0

∑
pj∈M |pj ·v>0

|| Rpj + tΔ − p�
i ||2 ,

(8)
where p�

i is the closest scene point.

These two functions are used as filters, where each hy-
pothesis hi ∈ H is rejected if it does not lead to a value
above a certain threshold. All remaining hypotheses
are collected in the set Hbest which is sorted in de-
scendent order hi � hj � . . . � hmin according to a
weighted sum of both cost functions. More hypotheses
are inserted into the set by exploiting the object’ sym-
metries. Often objects with symmetrical similar poses
need to be distinguished for handling and assembly.
Applying only the Ransac step makes it difficult to dis-
tinguish between theses similar poses. For example the
handle of the mug owns only few points in the scene,
hence the basic Ransac algorithm will not find a dif-
ference between the poses where the object is rotated
about its main axis. The same holds for other objects.
The symmetrical hypotheses are added to the set H
and filtered in such a way that non-ambiguous pose hy-
potheses, where objects do not collide survive. More-
over those hypothesis with highest evaluation values
remain as estimation for the scene. Therewith more
accurate hypotheses are found.

5 Results

For the first part of the evaluation the data set
known from [7] is used. Analyses are provided for
all illustrated scenes. The model data for the entirely
used scenarios are depicted in Fig. 3. Fig.4 shows one
example and plots the recognition rate according to
feature vectors for the data set. The results state that
the recognition rate is similar or better to the known
rates, but the computation time is about 1 sec for each
object, when the scene was sampled with a rate of 0.25
density.

Figure 3. The upper row presents the model data
from [7]. The lower row illustrates the models
used here.

Figure 4. A quantitative analysis with the data
set; left side: a recognized scene, right side the
recognition rate achieved for the three different
feature vectors.

As illustrated, the recognition rate is increased by
using TPs. Also the benefit from this is demonstrated
with a test illustrated in Fig. 5 which shows six cups
in various poses. Although the objects are placed on
the table the scene analysing approach estimates 6D
poses. Here, symmetry exploration leads to estimated
poses where the handle is matched correctly. In cases
where the estimated pose is erroneous, seeking for bet-
ter symmetrical hypotheses will not improve the esti-
mated pose and the handle of the mug does not appear
at the right position. Hence the number of correct can
be regarded as a quality measure of estimated poses.

More scenes are depicted in Fig. 6 and Fig. 7. Tab. 1
contains their results, where the analysis is repeated
10 times. The recognition ratio is listed in the table.
The quite high amount of false positive arises from
a) the very similar geometries and b) from the fact
that for some objects the accuracy of object models is
not very high and c) from that the poses are counted
as false positive if only e.g. the handle of the cup is
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Figure 5. A: Cups placed somehow on a table.

not recognized on the right position. Altogether the
recognition rates increase when Triple Point Features
are used. For all experiments the number of iterations
for Ransac is restricted to 20 · 103.

Figure 6. B: A service scenario, where three dif-
ferent objects are placed at random on the table.

Figure 7. C: Some electrical parts, which have
been grasped and plugged in an electrical cabinet
assembly.

6 Conclusion

This paper presents a Ransac based scene analy-
sis approach. For hashing feature vectors a new fea-
ture vector based on three points is introduced. In
addition, symmetries are exploited to distinguish be-
tween geometrical similar but for handling purposes
very different poses. The Ransac approach is robust

Table 1. Recognition Rate for all three examples.

Scene PFs SPs TPs ≈ time
object (TPs)

(A) 36/24 44/16 50/10 0.9 sec.
(B) 42/28 58/12 69/1 3.2 sec.
(C) 50/10 48/12 51/9 2.7 sec.

and the exploration of similarity increases the recogni-
tion rate, which is important for robotic applications
where robots have to grasp precisely. Further work
will accelerate the process pipeline and moreover in-
clude texture information to distinguish between ob-
jects which only differ in their textures.
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