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Abstract

We propose a method to construct a Hidden Markov
Model (HMM) for sign language recognition with a
topology which is suitable for a variety of hand mo-
tions. First, candidate HMMs are generated from
sub-motions extracted from training samples. If we
have many and various samples of motions, an opti-
mal HMM can be selected from candidates by the max-
imum likelihood (ML) method. However, it is diffi-
cult to collect many real samples and the ML method
with a small number of samples may select a HMM
too much specialized for the training samples. The
proposed method selects the best HMM for each word
by evaluating the performance using real samples and
virtual samples generated by an HMM made from real
training samples. Virtual samples are generated from
a HMM estimated from given real samples. On eval-
uation of HMMs, they bring a HMM that accepts not
only given real samples but also their variations suffi-
ciently similar to the real samples. With experiments,
we show the effectiveness of the proposed method.

1 Introduction

Sign language recognition consists of extraction of
features such as hand shapes, positions and velocity,
and recognition of extracted feature sequences. For the
latter, Hidden Markov Model (HMM) has widely been
used [1, 2]. The HMM consists of states correspond-
ing to sub-motions of hands, and transitions between
states.
Starner et al. proposed a method using HMMs with

a common fixed topology [1, 3]. However, it is diffi-
cult to appropriately learn state parameters if a sign
language word can be expressed by partially different
motions because multiple motions correspond to a sin-
gle state as shown in Figure 1. Starner [1, 3] and Gaolin
[4, 5] proposed methods where a word corresponds to
multiple HMMs in order to accept various motions. It
is, however, difficult to recognize various motions by a
fixed topology for all words. Because each word may
have a variety of hand motions, the topology of the
HMM should reflect the variety.
Kawahigashi et al. proposed a method generating

linear topology HMMs where number of states is auto-
matically determined for each word [6]. However, if a
word can be expressed by partially different motions, a
sub-motion may not correspond to a state in an HMM
generated from another type of motions due to the re-
striction of topology as the 3rd interval of Motion B in
Figure 1. It may be difficult to train such models for
a word with various motions.

Motion A

Motion B

Raise hands

Lower hands

Stop hands

Move hands horizontally

Figure 1. Correspondence between states and
sub-motions.

Matsuo et al. proposed a method generating a HMM
with junctions and branches [7]. But it generates only
one topology for each word and does not consider the
possibility that simpler topology may have the same or
better performance.

Generally, the HMM should have a topology which
brings high likelihood to training samples. However,
if the HMM over-fits to the training samples, it may
bring a low likelihood to test samples. If we have
sufficiently many and various samples, the maximum
likelihood method(ML method) can give us a suitable
model to describe the motion variety. However, col-
lecting many sign language samples is not easy.

We have a prior knowledge that two motions can be
considered as the same word if their difference is less
than an admissible difference estimated from the reso-
lution of the screen. Niyogi et al. proved that utilizing
“virtual examples” on training a model is equivalent
to incorporating a prior knowledge in some context
[8]. We introduce the prior knowledge of motions to
evaluate models. We propose a method that gener-
ates candidates of HMMs from training samples of a
word and selects an appropriate HMM by evaluating
them with not only real samples but also virtual sam-
ples. Evaluation of HMMs with them brings a HMM
that accepts not only given real samples but also their
variations similar to the real samples. This is effective
especially in the case where only a few real samples
are available. The best topology determined by the
proposed method reflects both the real training sam-
ples and samples with a little different motions. The
proposed method improves construction of HMMs in
the case where only a few real samples can be used.
We show the effectiveness of the proposed method by
experiments with real sign language word motions.

2 Generation of candidate HMMs

In order to obtain the best HMM of each word, we
generate candidate HMMs. First we define two HMM
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(a) Linear topology.

(b) Topology with parallel paths.

(c) Topology with branches and junctions.

Figure 2. Examples of topology of a composite
model.

models:

• Basic model: the HMM trained for a single type of
motions, which is generated directly from training
samples.

• Composite model: the HMM trained for multiple
types of motions, which is generated from basic
models or other composite models.

Then we consider the following 3 types of composite
models:

• HMM with a linear topology as shown in Figure
2(a)

• HMM with parallel independent paths for each
motion type as shown in Figure 2(b)

• HMM with junctions and branches as shown in
Figure 2(c).

2.1 Generation of basic models

A sequence of frames of a real sample is divided
into intervals corresponding to simple motions such as
“raising a hand” , and the intervals are classified into
stationary, linearly moving, or transition interval by
the method proposed in [6]. If samples of a word have
the same sequences of the classes, they are considered
to be the same type of motions and classified into a
same group. For each group, a basic model is gener-
ated which has a linear topology with the states cor-
respond to the intervals. The state parameters of the
HMM are estimated from features in a corresponding
interval.

2.2 Generation of composite models

A composite model is at first generated from basic
models. Then a further structured composite model
is generated by combining the composite model and
another basic model. Given two HMMs A and B, we
consider 4 composite models with the following topolo-
gies.

(a) The topology of HMM A.

(b) The topology of HMM B.

(c) The topology including HMM A and B in par-
allel in order to accept both samples.

(d) The topology generated by integrating com-
mon states in the topology of (c) by the
method in [7] in order to avoid too much spe-
cialization.

First, two basic models are combined into 4 types of
composite models. Then, each composite model is
combined with a new basic model to generate 4 new
composite models. By repeating this process, we gen-
erate a set of composite models that depend on all
basic models.

The above process still requires many combinations;
if we have M basic models, the total number of candi-
date HMMs is (M !/2)4M−1. Training all of the HMMs
requires high computation cost. Therefore, we further
restrict the order of the combination. Concretely, we
combine the two basic models with the most samples
into 4 composite models, and then combine each of the
composite models with the basic model with the next
most samples. The combination of a basic model and a
composite model is repeated in the descending order of
the number of corresponding samples. This is because
basic models corresponding to the more samples are
the more important. By this restriction, the number
of candidate HMMs becomes 4M−1.

3 HMM selection with virtual samples

3.1 Trade-off between specialization and gener-
alization

The HMM of a word should give high likelihood only
for the word while it should give high likelihood for a
variety of motions corresponding to the word. There is
a trade-off between specialization and generalization.

If only a single type of motions is valid for a word, the
word can be learned by an HMM with linear topology
like Figure 2(a). If multiple types of motions are valid
for a word and they are learned by an HMM with lin-
ear topology, it may give high likelihood for the other
words because a state trained with different motions
may have a large variance for a feature. Such a word
can be learned by an HMM including parallel paths like
Figure 2(b). However, the trained HMM may over-fit
to the training samples, and give low likelihood for
other similar samples. Since appropriate topology dif-
fers for each word, the trade-off between generalization
and specialization should be solved for each word.

The simple criterion of likelihood does not take ac-
count of generalization. Therefore, it tends to select
an HMM specialized for a small number of samples.

To solve the trade-off, Minimum Description
Length (MDL) [9] and Akaike’s Information
Criterion(AIC)[10] have been proposed. How-
ever, the above methods should be applied with many
samples. because the degree of freedom of an HMM is
as high as

O((number of states)×(dimension of feature vector)2).
(1)
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For example, if a very simple motion consists of 3
sub-motions and the feature vector consists of only
two-dimensional position and velocity for each hand,
the number of parameters exceeds 150.
Difficulty in collecting many training samples is an

important problem on evaluating candidate HMMs.
So, we propose a method to avoid too much special-
ization by introducing virtual samples probabilistically
generated from real samples.

3.2 Generation of virtual samples

Virtual samples of a word should be valid for the
word, and on the other hand they should be different
from real samples. We first build a HMM for virtual
samples and generate virtual samples from the HMM.
A word has multiple types of valid motions. Each

type can be learned by an HMM with linear topology.
We make the HMM for virtual samples by parallely
connecting the basic models generated in Section 2.1.
But, if the samples of a certain motion type are not
so many, the learned variances may be smaller than
difference clearly admissible as similar motions on the
screen. So, we artificially increase the variances of fea-
ture vectors in order to generate various virtual sam-
ples.
The actual procedure is as follows:

1. Generate an HMM by connecting basic models
with their head and tail. The transition proba-
bilities are assigned a number proportional to the
number of corresponding real samples.

2. Train the HMM by the Baum-Welch method with
real samples.

3. Artificially increase autovariances. The increment
for each dimension is defined as a squared differ-
ence of the value of the dimension when hand or
face move b[pixel] on the screen.

3.3 Evaluation of candidate HMMs with virtual
samples

We select a final HMM from the candidates gener-
ated in Section 2 by the ML method using both real
and virtual samples. The likelihood function L(m) for
a candidate HMM m is defined as follows.

L(m) =

N∑
n=1

log2 P (On |m ) +

K∑
k=1

log2 P
(
Õk |m

)
,

where On and Õk mean a real sample and a virtual
one, respectively. The number of virtual samples, K is
experimentally determined. Note that the virtual sam-
ples are used only for evaluating the candidate HMMs
as shown in Figure 3.

4 Experiment

4.1 Recognition of motions by unknown speak-
ers

We perform an experiment recognizing real samples
from motions by an unknown speaker. To see the ef-
fectiveness in the case where we have only a few real

Real samples

HMM for
virtual samples

generate with
artifical variance

Virtual samples

Candidate HMMs

The HMM with
the highest likelihood

Calculate
likelihoods of HMMs

for samples

generate

Figure 3. Process for generating an HMM for a
word.

samples, each HMM is generated by a few real sam-
ples. We ask 3 untrained speakers to perform motions
3 times for each word and generate a HMM by using
the 6 real samples from the two speakers. Then, 3 mo-
tions by the other speaker are recognized. The result
for the 20 words shown in Table 1 is shown in Table 2.

The result shows that the proposed method gener-
ates better HMMs than the fixed topology method and
the simple ML method. The proposed method can se-
lect more general HMMs.

The result also shows that more virtual samples do
not always give better recognition ratios. This means
that sufficiently many virtual samples sufficiently rep-
resent variation of samples and models selected by
them are almost fixed. In our experiments, virtual
samples as many as real ones are sufficient.

4.2 Recognition of motions by known speakers

To see the performance of the proposed method, we
performed a recognition experiment with leave one out
method, where 3 speakers perform each word motion
3 times, and then an HMM by using 8 samples recog-
nizes the rest sample. The result for 20 words in Table
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Table 2. Correct recognition ratio for a speaker not used when training HMMs.
Rank Linear ML proposed method

only (number of virtual samples)
1 6 12

1st 0.394± 0.072 0.444± 0.080 0.476± 0.075 0.490± 0.074 0.487± 0.073
2nd or above 0.661± 0.102 0.706± 0.083 0.719± 0.081 0.741± 0.088 0.739± 0.086
3rd or above 0.800± 0.067 0.844± 0.055 0.872± 0.063 0.864± 0.072 0.861± 0.068

Each column means (MEAN)± (STANDARD DEVIATION).

Table 3. Correct recognition ratio of leave one out method.
Rank Linear ML proposed method

only (number of virtual samples)
1 8 16

1st 0.706± 0.107 0.733± 0.091 0.743± 0.067 0.752± 0.063 0.749± 0.062
2nd or above 0.872± 0.058 0.922± 0.048 0.920± 0.058 0.923± 0.044 0.926± 0.042
3rd or above 0.950± 0.033 0.972± 0.025 0.963± 0.034 0.967± 0.033 0.966± 0.033

Each column means (MEAN)± (STANDARD DEVIATION).

Table 1. Words used in experiments.
Index Meaning Index Meaning
1 small 11 which
2 big 12 after a long time
3 long 13 talk to
4 short 14 cooking
5 “Thanks” 15 highest
6 happy 16 lowest
7 an elder sister 17 care
8 an elder brother 18 examination
9 brothers 19 stop
10 come together 20 rest

1 is shown in Table 3. “Linear only” means the exper-
iment where linear HMMs generated by [6] are used.
“ML” means the experiment where candidate HMMs
are generated as Section 2 and an HMM is selected by
the ML method for each word. The ratios for “Linear
only” and “ML” in Table 3 are averages for 9 ways
of selecting the sample to recognize. In the proposed
method, virtual samples are probabilistically generated
from HMMs. The recognition ratios for the proposed
method in the table are averages for 8 different set of
virtual samples and 9 ways of selecting the sample to
recognize.
The result shows that the proposed method achieves

better recognition ratios. The improvement by the pro-
posed method in Table 2 is higher than that in Table 3.
This shows that the proposed method is more effective
in the case where the given real samples are few.
The recognition ratios reach the ceiling similar to

those in Table 2. In our experiments, virtual samples
as many as real ones are sufficient.

5 Conclusion

We proposed a method to generate a HMM with
the best topology reflecting variety of motions for a
sign language word. It is effective especially in the
case where only a few real samples are available. To
avoid over-fitting, artificially generated virtual sam-
ples are used for selecting the best topology. Experi-
ments show that the proposed method generates better

HMMs than those with linear topology or those gener-
ated conventional ML criteria.
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