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Abstract

A new approach is proposed for the automatic detec-
tion of the near-end and far-end intima and adventitia
inner boundaries in ultrasound images of the common
carotid artery. This method uses the instantaneous co-
efficient of variation edge detector, fuzzy classification
of edges, several discriminating features of the carotid
wall boundaries and dynamic programming. The ca-
rotid wall boundaries are detected both in healthy and
in atherosclerotic arteries, with a wide range of plaque
types and sizes. Manual and automatic results are sig-
nificantly better for the far-end wall, where the auto-
matic detection shows an accuracy similar to manual
detections. The application of this approach in clini-
cal practice is encouraged by the results for the far-end
wall and the short computation time.

1 Introduction

Atherosclerosis is a serious disease of the arteries
that can lead to cardiovascular events like myocardial
infarction and stroke. One of the most frequently used
methods of diagnosis of this disease is the measure-
ment of the intima-media thickness (IMT) of the ca-
rotid artery [1], the distance between the innermost
boundaries of the intima and the adventitia layers of
the artery wall.

The IMT measurement is often performed in B-mode
ultrasound images due to their lower cost and smaller
risk for the patient than alternative medical imaging
modalities [2]. The common carotid artery (CCA) is
often used in clinical practice because it is easier to
segment than other regions, like the bifurcation of the
artery.

Several techniques have been previously introduced
for the detection of the carotid boundaries in ultra-
sound images, like [3–9]. However, all these techniques
have important limitations, like the ones referred in [8].
This explains why the manual segmentation is still the
most common procedure in clinical practice.

This paper introduces a new approach for the auto-
matic detection of the inner boundaries of the intima
and adventitia layers (represented by Bint and Badv in
Fig. 1) at the near-end (NE) and far-end (FE) artery
walls in B-mode images of the CCA. As in [3], the pro-
posed method also uses dynamic programming (DP),

but it takes advantage of recent developments in edge
detection in ultrasound images [10, 11], it requires the
training of less parameters and it uses new discrimi-
nating features of the intima and the adventitia.

Recently, we have introduced in [8, 9] another ap-
proach to the same problem. This approach used
RANSAC to find the best fit of a cubic spline to each
adventitia inner boundary. A combination of dynamic
programming, smooth intensity thresholding surfaces
and geometric snakes was used to detect the intima.

This paper is focused on the description of the new
approach and on some results that illustrate the im-
provements, when compared to [8] and [9], namely,
more reliable segmentations of the FE wall and a
shorter processing time.

2 Materials and methods

2.1 Image database

The image database is the one described in [8], con-
sisting of 50 longitudinal B-mode images of the CCA,
acquired with a Philips HDI 5000 ultrasound system
and recorded with 256 gray levels. It refers to 25 differ-
ent symptomatic patients, with several classes (classes
II-IV), sizes and shapes of plaques [8]. The use of more
than one image of the same patient increases the size of
the database and allows the study of the inter-subject
error that can result from differences in the contrast,
in the speckle and in the visibility of the boundaries
of the artery wall. However, the number of images
taken from each patient should be small to minimize
correlation between images.

The resolution was normalized to 0.09 mm, a com-
mon value used in clinical practice.

The manual segmentation of each image performed
by a medical expert was used as the ground truth.

2.2 Description of the approach

The proposed approach can be summarized in four
steps, described in the following subsections.

2.2.1 ROI Selection

The proposed approach begins with the selection of a
region of interest (ROI) in a B-mode image of the CCA,
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Figure 1. Example of a B-mode image of the
CCA. At the NE and FE walls, the inner bound-
aries of the intima and of the adventitia are rep-
resented by Bint and Badv, respectively.

like the one presented in Fig. 1, in order to remove the
image borders with text or without any echo.

2.2.2 Fuzzy edge map and fuzzy valley edge map

This step consists of estimating two fuzzy edge
maps that are fundamental for the detection of the
carotid wall boundaries, namely the fuzzy step edge
map (fFM(x, y)) and the fuzzy valley edge map
(fFVM(x, y)).

The fuzzy step edge map is computed as in [8], using
the instantaneous coefficient of variation (ICOV) edge
detector [10,11]. The likelihood of the pixel at location
(x, y) being an edge is represented by f(x, y) = 1 −
τ(x, y), where τ(x, y) is the Tukey’s function for the
ICOV of this pixel, given by

τ(x, y) =

⎧⎨
⎩

[
1−

(
ICOV(x,y)

σs

)2
]2

ICOV < σs

0 ICOV ≥ σs

(1)

where σs =
√

5σe and σe is the image edge scale, esti-
mated from the set of pixels with positive ICOV using
robust statistics [8]. The fuzzy edge map, fFM(x, y), is
set equal to f(x, y) at pixels that are local maxima of
the ICOV and to zero at other pixels.

In healthy subjects, the intima and the adventitia
appear as two almost parallel echogenic lines separated
by a hypoechogenic media region, forming an intensity
valley shaped edge (Fig. 2) known as the ’double line’
pattern [12]. The determination of the fuzzy valley
edge map is based on the search in the direction of
the gradient, up to a certain distance L from the edge
pixel, for an intensity profile like the one presented in
Fig. 2. The fuzzy valley edge map is estimated by
f∗(x, y) = 1− τ∗(x, y), being τ∗(x, y) given by

τ∗(x, y) =

⎧⎨
⎩

[
1−

(
ΔI(x,y)

σ∗

s

)2
]2

ΔI < σ∗s

0 ΔI ≥ σ∗s

(2)

where σ∗s =
√

5σ∗ and σ∗ is the scale for the normalized
amplitude of the lower maxima, ΔI(x, y), defined as

ΔI = (Ip − Iv)/(Iv + ε) (3)

Figure 2. Example of a real intensity profile of
a valley edge (segment ve), where: I is the in-
tensity; e is the location of the edge; de is the
distance from the edge in the direction of its in-
tensity gradient, ∇I(e); a is the location of the
lower maximum; b is the location of the higher
maximum; and L is the maximum distance of
search. Segment se corresponds to a step edge
intensity profile.

where ε is a small positive constant used to avoid di-
visions by zero. ΔI(x, y) is estimated from the subset
of fuzzy edge pixels for which Ip > 0. fFVM(x, y) is
set equal to f∗(x, y) at the ICOV local maxima and to
zero at other pixels.

2.2.3 Detection of the carotid intima

In this third step, the NE and the FE intima inner
boundaries are estimated (Fig. 3).

To take advantage of a priori knowledge about the
NE and FE intima edges, edge pixels in each column
of the ROI are processed in pairs to compute a NE
and a FE fuzzy intima score map, fNE FIM(x, y) and
fFE FIM(x, y), shown in Fig. 3 a) and Fig. 3 b). Each
pair of edge pixels has to satisfy two constraints: the
intensity gradient points upward at the NE boundary
and downward at the FE boundary; the distance be-
tween these two pixels is neither smaller than a mini-
mum lumen1 diameter, LDmin, nor larger than a max-
imum carotid diameter, CDmax. The maximum lumen
diameter is approximately the same as CDmax since
the IMT is very small in healthy people.

Taking into account that no edges are expected in
the lumen, this property is embedded in a fuzzy score
computed for each pair of plausible NE-FE intima edge
pixels, given by

SI = e−z2/2 (4)

where: z = FMmax/σFM; FMmax is the maximum
value of the fuzzy edge map between the two NE-FE
intima edge pixels; σFM is a scale parameter. The max-
imum value of SI found for each edge pixel of the pair
is saved in fNE FIM(x, y) and fFE FIM(x, y).

The NE intima boundary (first white contour from
the top in Fig. 3 c)) is estimated as a longitudinal
smooth contour that maximizes a cumulative score,
computed from fNE FIM(x, y) and implemented as a
gain function, GI, with two terms: one embedding
edge information derived from fNE FIM(x, y) and the
other conveying geometric smoothness information. GI

1The lumen is the region inside the artery where the blood
flows.
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(a)

(b)

(c)

Figure 3. Detection of the intima inner boundary
for a ROI in the image of Fig. 1: a) fNE FIM(x, y);
b) fFE FIM(x, y); c) estimated intima inner
boundary.

is given by

GI = ψ(x1, y1) +
N∑

j=2

[ψ(xj , yj) + λρ(xj , yj)] (5)

where: N is the number of columns of the ROI; (xj , yj)
are the coordinates of the contour pixel at column
j; ψ(xj , yj) = fNE FIM(xj , yj); ρ(xj , yj) is a geomet-
ric term with values ρ(xj , yj) = 1 if yj = yj−1 and

ρ(xj , yj) = 1/
√

2 otherwise; λ is a weight parameter.
A similar procedure is used to estimate the FE in-

tima boundary (second white contour from the top in
Fig. 3 c)), by setting ψ(xj , yj) = fFE FIM(xj , yj).

2.2.4 Detection of the carotid adventitia

The last step of the method consists of the determi-
nation of the adventitia inner boundaries (Fig. 4).

In order to consider both step edges and valley
edges, the fuzzy adventitia edge map is computed as
fFAM(x, y) = (fFM(x, y) + fFVM(x, y))/2.

NE adventitia edge pixels have the following proper-
ties: they must be above the NE intima; their intensity
gradient must point upward; their distance to the FE
intima has to be smaller than CDmax. For each edge
pixel satisfying these constraints, the value of the NE
fuzzy adventitia score map is computed as

fNE FAM(x, y) = fFAM(x, y)e−z2/2 (6)

where: (x, y) are the coordinates of this edge pixel;
z = FAMmax/σFAM; FAMmax is the maximum value of

(a)

(b)

(c)

Figure 4. Detection of the adventitia inner
boundary for a ROI in the image of Fig. 1:
a) fNE FAM(x, y); b) fFE FAM(x, y); c) estimated
adventitia inner boundary.

fFAM between (x, y) and the NE intima contour, along
the same column; σFAM is a scale parameter. This
score favors edges with a stronger value of fFAM(x, y)
and penalizes edges that have other plausible adven-
titia edges between them and the lumen. Figure 4 a)
shows fNE FAM(x, y) computed for a ROI in the image
of Fig. 1.

Finally, a DP algorithm processes fNE FAM(x, y) to
estimate the NE adventitia (first white contour from
the top in Fig. 4 c)), corresponding to the contour that
maximizes a gain function like the one in equation (5),
but setting ψ(xj , yj) = fNE FAM(xj , yj).

The FE fuzzy adventitia score map, fFE FAM(x, y),
presented in Fig. 4 b), and the FE adventitia bound-
ary, corresponding to the second white contour from
the top in Fig. 4 c), are computed in a way similar to
the one described for the NE adventitia. However, in
this case ψ(xj , yj) = fFE FAM(xj , yj) and the following
properties are considered for FE adventitia edge pix-
els: they must be below the FE intima; their intensity
gradient must point downward; their distance to the
NE intima has to be smaller than CDmax.

3 Results

3.1 Parameter settings

The range of values observed in the dataset lead to
the following settings: CDmax = 12.5 mm and L = 10
pixels. Since the observed IMT can be almost as large
as the lumen diameter, LDmin was set to 1 mm.
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Table 1. Parameters that minimize the mean
value of Dmean for the training image set and for
the manual segmentations.

σFM σFAM λ
Intima NE 0.3 - 10

FE 0.1 - 70
Adventitia NE - 0.30 110

FE - 0.45 90

A training phase, based on a subset of 20 images
of the dataset, was necessary to estimate σFM (equa-
tion (4)), σFAM (equation (6)) and λ (equation (5)).
The optimum values found for these parameters are
given in Table 1.

The following results refer to the remaining subset of
30 images of the dataset. These images were not used
in the training phase and correspond to a different set
of patients.

3.2 Segmentation results

Several automatic segmentations of the inti-
ma-media region, delimited by the detected intima and
adventitia contours, for the NE and FE carotid bound-
aries, are presented in the left column of Fig. 5. For
comparison, the right column of this figure shows the
corresponding results produced by the method intro-
duced in [8] and [9]. The manual segmentations of the
medical expert are also shown for reference.

The inter-method (manual versus automatic) errors
were evaluated by the coefficient of variation, CV ,
computed for IMTmean, the mean IMT of each seg-
mented intima-media region. The coefficient of varia-
tion is determined by [3]

CV = 100
se

x
% (7)

where se = sd/
√

2, x is the pooled mean and sd is
the standard deviation of the differences in IMTmean

for the manual and the automatic segmentations of
the same intima-media region. For the approach intro-
duced in [8,9], the CV is 15.0% at NE boundaries and
21.5% at FE boundaries. For the new method the CV
is 18.4% at NE boundaries and 6.4% at FE boundaries.
The new approach does not show improvements at NE
walls but it is much better at FE walls.

Using Matlab on a computer with an Intel Core 2
Duo processor at 2.13 GHz, the time required by the
new approach to segment an image is in the range
[0.5, 2.1] s, with a mean of 0.8 s. For the previous ap-
proach, the median time is 18.9 s per intima boundary
and 28.5 s per adventitia boundary.

4 Conclusion

A new method was introduced for the automatic seg-
mentation of the CCA in B-mode images. It takes ad-
vantage of the ICOV edge detector and uses several
discriminating features of the intima and adventitia
boundaries.

The proposed method has a simpler implementation
and requires much shorter processing times than the
approach recently introduced in [8] and [9]. It is also
robust, since it is able to segment both the NE and FE

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Examples of manual detections of
the medical expert (white points) of the intima
and adventitia boundaries, along with the cor-
responding automatic detections (white curves)
produced by the proposed method (left column)
and the approach introduced in [8, 9] (right col-
umn): a-d) NE wall; e-j) FE wall. Images e) to
h) show two arteries with large class III plaques
of different shapes.
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boundaries in healthy and in atherosclerotic arteries,
with a wide range of plaque types and sizes, as illus-
trated by the examples shown in Fig. 5 e) and g), with-
out the help of manual initializations or corrections of
the DP contours.

One drawback of the method is the need for a train-
ing phase. Although no restrictions were made to the
scanning parameters, the images of our database were
all acquired with the same scanner model. Therefore, a
normalization of the image histogram may be required
to avoid a new training of the method when the al-
gorithm is applied to images acquired with different
scanners.

The automatic results are similar to the manual
ones, specially at the FE wall, where the visibility of
the intima and adventitia boundaries is generally bet-
ter. It is more difficult to detect NE boundaries than
FE ones, even for medical experts. This problem is a
consequence of the poorer visibility of NE boundaries,
being more critical for the NE adventitia. The in-
creased difficulty in detecting NE boundaries explains
the preference for the FE wall in clinical practice, when
it comes to IMT measurements. The high accuracy of
the detections at FE walls and the short processing
time suggest that the proposed method can be an ef-
fective aid in clinical practice for the IMT measurement
at FE walls.

In a future work, the method should be submitted
to a more comprising and detailed quantitative anal-
ysis, using manual segmentations performed by more
than one medical expert and a larger dataset. The im-
provement of the discrimination between edges and the
inclusion of more powerful classifiers are other impor-
tant issues to be considered.
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