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Abstract

In this paper, we present a real-time pedestrian
tracker that combines a robust appearance-based pedes-
trian detector with application-specific constraints and
motion information. The targeted application is the
automatic detection of vulnerable road users in blind
spot cameras on trucks. This application imposes sev-
eral challenges that need to be tackled. Vulnerable
road users are a very diverse class, and we need a
high precision and recall rate with real-time perfor-
mance. Here, we present a first step towards such an
automatic detection system. The novelty of our ap-
proach is the extension of a robust pedestrian detec-
tor towards real-time performance. The information
from the appearance-based detector is used in combina-
tion with motion-based estimations to efficiently reduce
the search space for the appearance-based detector in
consecutive frames. This results in a multi-pedestrian
tracker from a moving camera which is both optimized
in terms of accuracy and speed. We recorded several
data sequences to evaluate our pedestrian tracker, and
performed initial experiments with promising results.

1 Introduction

Approximately 1300 casualties are caused by blind
spot accidents every year in the European Union [1].
Bicyclist and pedestrians are the most common vic-
tims. The most widely used solution is the use of
blind spot mirrors, which is obliged in the EU by law
since 2003. However, it is shown that these mirrors are
often not, or incorrectly used. We believe that an ac-
tive driver-independent system offers a better solution.
Therefore, our goal is to develop an application that
can automatically detect vulnerable road users in blind
spot cameras. When a dangerous situation occurs, the
system should warn the driver. This is an extremely
challenging task. Firstly, vulnerable road users are a
heterogeneous object class. Besides pedestrians, we
also need to detect bicyclists, children, wheelchair users
and mopeds. Secondly, because the field of view of the
camera covers the blind spot area on the side of the
truck, we have a highly dynamic background. Since
the camera is moving techniques like adaptive back-
ground estimation or background substraction, which
can be calculated fast, are not an option. The biggest
challenge, is the hard real-time character of the appli-
cation, combined with the need for a high precision
and recall rate. We only have limited time available to
detect the vulnerable road users. This paper presents
work on a first part of the application: we developed a
pedestrian tracker for a moving camera which is both
robust and fast. To achieve this, we extend Felzen-
szwalb & Ramanan’s appearance-based pedestrian de-

Figure 1. Blind spot area of a truck

tector [5, 6], which is known for its excellent recog-
nition performance, but is not very fast. The main
idea behind our approach is that we start from a re-
liable frame-by-frame detection, and maximally inte-
grate the spatial information from this detector with
the temporal information at hand. This combined in-
formation is used to narrow down the search space for
the appearance-based detector, thereby resulting in a
fast and reliable tracker. Using this approach there is
no need for a multi-camera setup or camera calibration.
To test our proposed algorithm, we recorded a number
of data sequences and performed initial experiments
on them. The outline of this paper is as follows: in
section 2 related work on this topic is discussed. Sec-
tion 3 describes our pedestrian tracker. In section 4
we discuss the results of this approach. We conclude
in section 5 with final remarks and future work.

2 Related Work

Several pedestrian tracking algorithms are already
described in the literature. Most of them are based
on a fixed camera, and rely on background sub-
straction (e.g. [16, 14]), but this cannot be used
in our application. Some of these static camera
approaches use a thermal camera to eliminate the
influence of shadows [12]. In the case of a moving
camera two approaches are used. One is the use of an
appearance-based detector, by using a sliding window
technique: across the entire image one looks at all
possible locations and all possible scales. Currently
this approach does not achieve real-time performance.
Methods have been proposed using a detector cascade
with a fast rejection of false detections [15], while [11]
proposes a powerful branch and bound scheme to
tackle this problem. Our method eliminates the need
for a full search over the entire image using the spatial
information from the pedestrian detector, and an
estimation of the next position based on temporal
information.
Another approach for moving cameras is to exploit
disparity characteristics [8]. When using a monocular
approach, most pedestrian trackers on moving vehicles
use a forward-looking camera [7, 8], or still need
to be extended to multi-person tracking [13]. We
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differ from these trackers: our goal is a monocular
multi-pedestrian tracking system with field of view
aimed sidewards, towards the blind spot of the vehicle
(see fig. 1), at real-time performance. This field of
view results in motion blur and large distortion. To
achieve a moving camera multi-person tracker, we use
a tracking-by-detection approach and start from an
existing appearance-based object detector based on
the discriminatively trained part models, introduced
by Felzenszwalb et al [5, 6]. These authors extend
the idea of the Dalal-Triggs model [2], which is based
on the gradients (HOG), with a part-based model.
Recently they proposed a cascade object detection
using their part models [4], where they first look
at hypotheses that score high using a weak model.
If that is the case these hypotheses are evaluated
further using a more complex model, otherwise they
can immediately be discarded. This way a significant
detection speed-up is achieved. We use the pedestrian
part-based model and the cascade object detection as
detector for our pedestrian tracker.
In [3], Enzweiler et al. give an overview and perform
experiments using different pedestrian detection ap-
proaches. They compare the Dalal and Triggs model
(HOG together with lineair SVM as classifier) with a
wavelet-based AdaBoost cascade [16]. Besides these
approaches, they also examine two other methods,
one based on neural networks and one based on a
combined shape-texture model. Their work clearly
shows an advantage of the HOG-based approach at
the cost of lower processing speeds. These results are
the motivation why we use a HOG-based detector. Yet
instead of using a single global HOG-descriptor, we
select the parts-based model proposed by Felzenszwalb
et al., which has also shown excellent results in the
Pascal VOC challenge [5, 6].

3 Proposed tracker method

To achieve a high precision and recall rate, our
pedestrian tracker extends the cascade object detec-
tion part-based model as proposed by Felzenszwalb et
al. [4]. Their method works as follows. The object that
has to be detected is described using a HOG model.
The model consists of a root filter and a number of

smaller part filters. The position of each of the parts
are latent variables, which are optimized during the
detection (fig. 2). A first step is the construction of
a scale-space pyramid from the original image. This
is done by repeated smoothing and subsampling. For
each entry of this pyramid, a feature map is computed,

Figure 2. The used HOG model. Root filter (L),
Part Filters (C), Prior estimate of postion of the
part filters (R)

Figure 3. Example detection with estimated cir-
cular region (yellow), estimated next search space
(green) and the standard search space (red)

which is built using a variation of the HOG features
presented by Dalal and Triggs [2]. For a specific scale
one computes the response of the root filter and the
feature map, combined with the response of the part fil-
ters and the feature map at twice the resolution at that
scale. The transformed responses of the part filters are
then combined with the response of the root filter to
calculate a final score. Using weak hypothesis first, a
fast rejection is possible. Our algorithm works as fol-
lows. At the first video frame, a detection runs over the
entire image frame. We only search on the scales that
are needed in our application. We use a linear Kalman
filter [10] to estimate the next position of the pedes-
trian, based on a constant velocity model. Our exper-
iments showed that this assumption holds and suffices
for a robust detection. We use the position and veloc-

ity as our state estimates: xk = [ x y vx vy ]
T
.

The Kalman filter is implemented with the following
time update equation: x̂−k = Ax̂k−1.

Note that x̂−k refers to the a priori state estimate
at timestep k, while x̂k refers to the a posterior state
estimate at timestep k. We used a constant velocity
motion model, and can only observe the position. The
process matrix A then becomes:

A =

⎡
⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎦ (1)

As initial Kalman motion vector we use the opposite
of the motion vector of the vehicle, because the walk-
ing speed of pedestrians is negligible as compared to
the truck speed. Around the estimated new pedestrian
centroid a circular region is constructed with a radius
based on the position in the image. Detections which
are closer to the horizon are given a smaller radius,
since they are further away from the camera. This
circular region is using to look for a new matching
centroid in the next frame. A new search region is
calculated around the estimated new centroid, based
on the extension of the previous bounding box area.
For the consecutive frames we only look for pedestri-
ans in the estimated search location, thereby reducing
processing time and increasing the processing speed.
Overlapping bounding boxes are combined into a sin-
gle search space. The use of this search space also
eliminates false detections, which could otherwise be
found in the image where no pedestrians are possible.
Because we only search in parts of the frame based on
estimates using previous detections, we need to include
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Figure 4. Example of our tracking algorithm

a way to detect pedestrians that enter the frame and
pedestrians which are lost during tracking because of
e.g. occlusion. One solution to the first problem is
constructing a standard search region at the boundary
of the image at the specific locations where one can ex-
pect that pedestrians enter the frame. The occlusion
problem is handled using our Kalman motion model.
Fig. 3 shows the standard and estimated next search
space, together with the circular region in which a new
centroid is expected.
After the search space is constructed we use our
appearance-based pedestrian detector only on these
parts of the image. For each pedestrian we are track-
ing, we evaluate if a centroid of a new detection is found
in the estimated circular region. If this is the case we
have a match. If multiple detections are found, the
nearest one is chosen as a match. The Kalman filter
is updated with this new information, a new bound-
ing box is calculated based on a weighted average be-
tween the previous bounding box size and the current
bounding box size, and a new estimate position and
circular region is calculated. If for a previous tracking
no match is found, we update the Kalman filter based
on our prediction. If this happens for multiple frames
in a row, the tracker discards this person. When a
detection is found where no previous tracker was avail-
able, we start to track it from there on. Only pedes-
trians which can be tracked over multiple consecutive
frames are shown as detected. We impose a number
of application-specific constraints to improve the per-
formance of our tracker: firstly, we reject detections of
which the estimate is too far away from the centroid.
Secondly, detections above the horizon and detections
of which the size of the bounding box is inconsistent
with the scale in the image are discarded. The latter
is determined using the ratio of the bounding box size
and the radius of the circular region.

4 Experiments

To test our tracking approach we recorded several
video sequences with a standard camera, which was
mounted on a regular car. The camera was pointed
towards the blind spot region: sidewards and slightly

Table 1. Performance results.

# frames avg. fps precision recall
seq. 1 129 9.57 0.76 0.92
seq. 2 118 8.97 0.95 0.93
seq. 3 60 9.47 0.95 0.8

Figure 5. Precision-recall graph of our tracking
algorithm as evaluated on our test set

backwards. A resolution of 640x480 and frame rate
of 15 fps was used. Videos were recorded with both
pedestrians and bicyclists. After editing we maintained
1279 walking pedestrian video frames. Figure 4 shows
our tracking algorithm on one of the video sequences
that we recorded. We have implemented our algo-
rithm in Matlab and partially in C. The results be-
low are computed on an Intel Xeon Quad Core with a
clock speed of 3 GHz, using an unparallelized, single-
threaded manner. When using the standard software
as provided in [6] on an entire image frame with our
resolution detection time equals on average 1.17 sec-
onds, i.e. 0.86 fps. Using our tracking approach we
dramatically reduce the processing time. The size of
the search region depends on the number of pedestri-
ans in the image. On our test set video sequences, we
measured an average maximum frame rate of 12.6 fps,
an average frame rate of 8.6 fps, and the average worst-
case frame rate was 2.8 fps.
Table 1 gives the results for three of our video se-
quences. Both a high precision and recall rate are
achieved. Figure 5 shows the precision-recall graph as
calculated over our video data set. Figure 6 displays
the results of a tracking sequence of our algorithm on
one of the video sequences. The top row indicates the
position of the tracked pedestrians, per frame. The
second row shows the size of the search area. The bot-
tom row displays the frame rate. The average frame
rate was 8.4 fps for this detection sequence. Using
these figures we can evaluate the tracker based on the
number of pedestrians that are detected. At the be-
ginning of the sequence we see the initialization step,
where the entire frame is evaluated. This results in the
worst-case frame rate of 2.8 fps. In the next 10 frames
no pedestrians enter the frame, and only the standard
search region is evaluated, resulting in the best-case
frame rate of 14 fps. In for example frame 30 we see
that there were 4 pedestrians tracked, and the search
area was approximately half of the entire image frame.
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Figure 6. Results of our tracking algorithm on the video sequence shown in fig. 4. Top row: distance from
centroid point to origin for each detected pedestrian. Middle row: size of the search area in % of total image
size (dotted line indicates the entire image size). Bottom row: frame rate indicated per frame (dotted line
shows average frame rate).

5 Conclusion and Future Work

We presented a real-time pedestrian tracker for
moving cameras, by integrating an appearance-
based detector and temporal information. By using
application-specific constraints, and by limiting the
search space we achieve an average frame rate of 8.6
fps, with a high precision and recall rate. Future work
includes a further speed-up of our pedestrian tracker,
which can be achieved by e.g. integration of scale in-
formation to further reduce the search space, or by
a reimplementation without Matlab or on specialized
hardware. In our application, the horizon was manu-
ally extracted from the images. We could also use au-
tomated methods to deduce the horizon directly from
the images [9]. A next step towards the detection of
vulnerable road users in blind spot cameras require the
extension of our tracker to a more heterogeneous ob-
ject class, and the inclusion of other image cues, such
as optical flow motion.
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