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Abstract

In this paper, we propose to integrate sparse 3D
depth information into pedestrian detection task, in
order to achieve a fast boost in performance. Our
proposed method uses a probabilistic way to integrate
image-feature-based detection and sparse depth estima-
tion together. The depth information is used as a cue,
and provides additional discriminative ability for the
detection. There are two contributions in this paper:
1) a simplified graphical model which could efficiently
integrate depth cue into detection; and 2) a sparse
depth estimation method which could provide fast and
reliable estimation of depth information. The experi-
ment shows that our method could provide promising
enhancement over baseline detector with minimal ad-
ditional time.

1 Introduction

Pedestrian detection is a very fundamental compo-
nent in many applications, such as smart vehicle and
robot navigation. Typical method towards this task is
to slide a window over all the scales and positions of
the image, extract image features from each detection
window, and apply a pre-trained classifier to do the
pedestrian/non-pedestrian classification. For this kind
of method, image features are very important for the
performance. A robust feature set is the key to dis-
criminate pedestrians from background and other ob-
jects. Recent researches suggest that gradient-based
features, such as Histogram of Gradient and edgelets,
work very well in human detection, because they have
strong ability in catching the silhouette information.
However, for many real world scenes where com-

plex background and occlusion exist, gradient-based
features also encounter difficulties in perceiving suffi-
cient robustness. To deal with such kind of scenes,
researchers tried different ways, such as using multiple
image features and adding expressive object models,
to build a more discriminative detector. R. Schwartz
et al. [4] proposed to combine different types of lo-
cal features such as color, gradient, and textures to-
gether. They extract an 170,820 dimensional feature
vector from each detection window and use it for de-
tection. In another work, P. Felzenszwalb et al. [3]
introduced a deformable part model for detection. In
their work, they classify an instance as human not only
because it looks like a human, but also because it has
parts (such as head and feet), and these parts are in
appropriate positions. They showed that an informa-
tive model could also help to improve the detection
accuracy effectively. These two works are both very
excellent works. However, since both long feature vec-
tor and additional object models bring severe burdens
on computation, it is not easy to adapt these methods
in applications which require a fast processing speed.
Actually in many applications, the detection needs

to be done not only accurately but also fast. So the

method that used to improve detection performance
should also preserve a fast processing speed. From
this point of view, in this paper, we propose to use the
3D depth information as an additional cue to do the
pedestrian detection task. In our method, the depth of
each detection window is computed and used to map a
prior distribution of human’s actual height onto the
image plane. The resulted imaged height distribu-
tion is then used to update the image-feature-based
detection result for the corresponding detection win-
dow. The final detection result is contributed by both
image features and depth information, and could pro-
vide stronger ability to discriminate pedestrians from
other objects. There are mainly two contributions in
our work: 1) a probabilistic model for the efficient use
of depth information in detection; 2) a sparse depth
estimation method for a fast and reliable estimation of
depth information. We show that our method could
provide over 33% enhancement in detection accuracy
comparing to the baseline detector, with minor addi-
tional processing time.

2 Related Work

Depth information is valuable for human detection
and has been explored in many previous works. Ear-
lier works, such as [5] and [6], group the depth value of
neighbouring pixels to generate the region of interest
(ROI) in the image. Only the ROIs are expected to
have pedestrians’ existence and are further to be ap-
plied with a pedestrian detector. In these works, depth
information was mainly used to do pre-processing to
reduce the image searching space.
In [6], D. M. Gavrila et al. also implemented a

way to use depth information to verify detector’s out-
put. They assumed pixels of a true detection should
have similar depth values, and introduced a reject-
ing mechanism to get rid of detection windows which
have large deviation of depth inside. This could help
to filter out detections which contain an appreciable
amount of background. However, because the depth
was only used for post-verification on detector’s out-
put and could not contribute to the detection accuracy,
such kind of usage was still limited and did not make
the full use of depth information.
Recently, A. Ess et al. [2] presented a system which

integrate dense depth estimation, visual odometry and
pedestrian detection together for an on-board track-
ing purpose. In their system, the detector’s output
is integrated with depth information in a probabilis-
tic way, which is similar with our proposed method.
However, their approach is quite different with us. In
A. Ess’ work, the depth information is estimated for
every single pixel by doing dense matching (find pixel
wise correspondence) between stereo images. Though
the resulted dense depth map is very informative, the
dense matching itself is time consuming and sensitive
with some image conditions (such as image noise, tex-
tureless regions, and occlusions). In a simple word,
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they sacrifice the robustness and speed to obtain more
complete depth information of the scene. Contrast to
them, we put the speed and robustness in the first place
of consideration and use sparse matching to obtain the
depth information of the scene. Though our method
could only obtain the sparse depth information of the
scene, it is fast, reliable, and sufficient for our purpose.

3 Approach

Take stereo images as input, we have two comple-
mentary modules which are able to run in parallel. One
is a image-feature-based pedestrian detector, which ap-
plies on left camera image to generate a set of pedes-
trian hypotheses. The other is depth estimation, which
applies on the stereo images together to estimate a
sparse depth map of the scene. For every pedestrian
hypothesis output from the detector, a distance will be
computed from the depth map. The distance is further
used to update the hypothesis’ corresponding image-
feature-based confidence. In this work, we use a graph-
ical model to integrate these two modules together, and
introduce a prior height distribution of adult human to
enable the confidence updating.
We assume object’s imaged height is conditioned on

its category and the distance with respect to the cam-
era, but the object identity and the distance are in-
dependent from each other. Using a graphical model,
we can represent the conditional interdependence over
n pedestrian identities oi, their imaged height hi, and
the corresponding 3D distance di, as shown in Fig.1.
The I denotes the left camera image and the D indi-
cates the sparse depth map estimated from the stereo
image pair, both are observed evidence in the model.

Figure 1. Graphical model.

With the model, the overall joint probability could
be written in the following equation as

P(o, d, h, I,D) =
∏

i
P(oi)P(di)P(D | di)P(I | oi)P(hi | oidi). (1)

Using Bayes rule, we can give the likelihood of the
properties of pedestrian hypotheses that conditioned
on the image and depth evidences as

P(o, d, h | I,D) ∝
∏

i
P(oi | I)P(hi | oidi)P(di | D). (2)

In this work, we determine the depth in an explicit
way, where the depth for each pedestrian hypothesis
is exact given the depth evidence. This allows us to
margin out the d on both left and right hand side, for
a single object hypothesis, we then get

P(oi, hi | I,D) ∝ P(hi | oidi)P(oi | I), (3)

where in the left hand side, P(oi, hi | I,D) indicates
given the image evidence I and D, the probability of

an pedestrian hypothesis oi exits with its imaged height
hi. It is propagated with the P(hi | oidi) and P(oi | I),
and is a updated confidence estimation of pedestrian
hypothesis which not only take into account the im-
age evidence but also the depth information. We get
updated confidence for every pedestrian candidates by
propagating the P(oi, hi | I,D) from P(hi | oidi) and
P(oi | I). The P(oi | I) and P(hi | oidi) are estimated
from the detection and depth estimation respectively,
in the following paragraph, we will introduce the way
we estimate them in detail.

4 Baseline Pedestrian Detector

In order to obtain a set of pedestrian hypothesis oi
and their corresponding confidence P(oi | I), we trained
a baseline detector similar with the one described in
[1]. We also use the Histogram of Oriented Gradients
(HOG) as local feature and linear support vector ma-
chine as classifier. However, for the implementation
efficiency, we replace the original 36-dimensional HOG
feature with a novel proposed 31-dimensional one [3].
The training data we used is the INRIA person data
set, from which we arranged 3,610 positive samples and
15,000 negative samples, both are of the size 70 × 134.
The training returns a 3,255 dimensional linear classi-
fier (the size of 70 × 134 patch image’s feature vector).
While applying the trained detector to generate

pedestrian hypothesis, the classification score out-
put from the linear classifier is within the interval
(−∞,+∞). Since our graphical model wants a prob-
abilistic input p(oi | I) which should in the interval
(0, 1), we therefore transform the SVM output into a
probability form using a logistic function defined as

p =
1

1 + eAx+B
, (4)

where x is the classification score, p is its probability
form, A and B are parameters which could be estimated
by collecting a set of x and p. With novel classification
score x′, we take the corresponding p′ as p(oi | I).
5 Utilize Depth Information

The probability for the imaged height of a pedestrian
hypothesis P(hi | oidi) is estimated by observing the
height hi of its bounding box in a distance-conditioned
height distribution p(h | oidi). The later one is ob-
tained with the distance and a prior distribution of
pedestrian’s actual height.

5.1 Sparse Depth Estimation

Different with many previous works uses dense
matching, we adapt sparse matching to obtain the
depth information of the scene. To make the depth
map not “too sparse”, we used a novel multiple oper-
ator key point matching approach to obtain the raw
matching result of the stereo pairs.
From the stereo images, we extract scale invariant

key points with Difference-of-Gaussian operator and
corner key points with Harris operator. We compute
a 128-dimensional SIFT descriptor for each scale in-
variant key point, and find its corresponding point in
the other image by measuring the Euclidean distance.
For the corner key points, we extract their surrounding
11 × 11 pixels and do the normalized cross-correlation
matching. The matches of these two kinds of key points
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are then fused to our raw matching result. Because
these two kind of key points have quite different prop-
erties, using them together could help to establish suffi-
cient raw correspondences that covers most significant
portion of the image.
With the raw matching result, we further refine them

by enforcing Epipolar constrain to remove correspon-
dences that exist apart from their Epipolar line more
than a threshold (ex. 2 pixels). This could further
remove outlier matches and guarantee the quality of
matching. Then we do linear triangulation to get
the 3D coordinates of matched key points with pre-
calibrated camera matrices.
For each object hypothesis oi that we obtained with

the detector described in the previous section, we col-
lect all the matched key points inside its bounding box
and select one that is representative for it. The dis-
tance di between the representative point and camera
center is taken as the distance of the hypothesis. Here
we use a simple way to select the representative point.
We find the nearest k feature points Pt(t = 1, ..., k)
around the diagonals’ intersection of the hypothesis’
bounding box, and select the point Pi which has the
minimum sum of distance in depth with other points.
We think it is not a good solution and have tried to
use mean-shift to directly find the coordinates of the
3D points’ mass center. However, it did not perform
well enough even comparing to our simplest solution.
The reason may be that a lot of matched point is found
around the object’s boundary, and the mean-shift stops
at local maxima frequently.

5.2 Map the Prior Height Distribution

With class conditioned object hypothesis oi, its dis-
tance di and known camera’s focal length f , we map
a prior height distribution H of pedestrians to the im-
aged one p(h | oidi).
We specify that the height H of adult pedestrian is

normally distributed with a mean of 1.7 meters and
a standard deviation of 0.085 [8], therefore we have
H ∼ N(1.7, 0.0852). Using the similarity relation of the
two triangles, we can represent the imaged pedestrian’s
height as h = H f /d. Since H ∼ N(1.7, 0.0852), h is also
a simple Gaussian with 1.7 f /di as mean and 0.085 f /di
as standard derivation. Therefore we get p (h | oidi) ∼
N

(
1.7 f /di, (0.085 f /di)2

)
.

With this imaged height distribution and the ob-
served height hi of each bounding box in the image,
confidence of every single hypothesis could be updated
by propagating from p(oi | I) and p(hi | oidi). The up-
dated confidence obtained in this way has thus taken
into account the depth information and is expected to
be more discriminative than the visual-features-only
estimated result.

6 Experimental Results

The purpose of the experiment is to see if using
depth information in our proposed way could efficiently
improve image-feature-based pedestrian detection in
complex scenes. For this end, we prepared a very diffi-
cult dataset by selecting images from the ETHZ track-
ing sequence [2]. Our dataset contains 133 pairs of
stereo images of complex street view scenes, with 798
annotations as ground truth. All of the experiments
were done on an 2.83G Intel CPU with 4G RAM. The

sparse depth estimation was partially supported by a
NVIDIA GeForce 9800GT GPU with 512M VRAM.
In the experiment, we have three systems for com-

parison: the baseline detector, our proposed method
(baseline + depth) and a UoCTTI detector (baseline
+ part model) proposed in [3]. The UoCTTI detector
adapts a very expressive part model, and uses the part
information as additional cue for detection. It is one
of the best detectors in the PASCAL object detection
challenge.

6.1 Quantitative Results

Because all the three systems work by scanning
image windows and doing pedestrian/non-pedestrian
classification in each window, we use the false positives
per image (FPPI) as a metric to evaluate the combi-
national performance of detection and scanning. The
plot is shown in Fig.2. We can see our method has
made significant improvement over the baseline, and
comparable with the UoCTTI detector.

Figure 2. The FPPI plot of the three systems.

We also compute the interpolated Average Precision
(AP) [7] to summarize the overall accuracy of each sys-
tem. AP penalizes methods which achieve low total
recall as well as those with consistently low precision,
and is ideal for measuring the overall accuracy. The
AP for the baseline detector, UoCTTI detector and
our proposed methods are 0.1738, 0.2530 and 0.2325,
respectively. Our depth added method is very close to
the UoCTTI detector and brings near 33% improve-
ment to the baseline detector.
The speed of the three systems is listed in Table.1.

In the current implementation of our depth added
method, the detection and depth estimation are done
in serial. It cost 0.18 second per frame to update the
detection result from the baseline detector, thus the
overall speed is 1.88 seconds per frame. Since the de-
tection and depth estimation are designed to be done
in parallel, in that case, the speed will be 1.73 per
frame. This overall runtime performance is not good
enough and it still have space to improve. Because our
depth added method is free with the choice of baseline
detector, using other faster detector or implementing
current detector with GPU programming could make
the overall speed be able to meet more applications.

6.2 Discussion

In Fig.3, we display some example detection results
outputted from the three systems. Comparing to the
raw output of the baseline detector, both our depth
added method and the UoCTTI detector have made
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(1a) TP: 3, FP:7 (1b) TP: 3, FP:7 (1c) TP: 4, FP:6 (1d) TP: 5, FP:5

(2a) TP: 4, FP:6 (2b) TP: 7, FP:3 (2c) TP: 9, FP:1 (2d) TP: 7, FP:3

(3a) TP: 6, FP:4 (3b) TP: 8, FP:2 (3c) TP: 6, FP:4 (3d) TP: 7, FP:3

Figure 3. Some results of the three systems. The three rows correspond to the results from the baseline
detector, our method and UoCTTI detector respectively. (TP: true positive, FP: false positive.)

Table 1. Detection speed of the three systems.

Baseline 1.7s
UoCTTI 8.4s

baseline detector: 1.7s
Our Method depth estimation: 0.15s 1.88s

integration: 0.03s

significant improvement. It is to say, the depth cue and
the part cue could provide additional discriminative
ability to the image-feature-based detector. In some
crowded scenes, the UoCTTI detector did even better
than our method. This may mainly benefit from a very
expressive part model it used. The detector uses part
information as additional cue, which leads to the de-
tector be able to preserve strong robustness even when
heavy occlusion exist.
However, in some board scene images such like the

last two columns of Fig.3, our depth added method
sometimes could do even better than the UoCTTI de-
tector. We think this is because the UoCTTI detector
may face the trade-off between different sources of in-
formation. While it uses a deformable part model and
utilize the position of parts to improve the detection,
it may also suffer from that model. Because the fi-
nal detection result is partially based on the parts and
their corresponding locations, in case the parts are not
visually clear enough, their model will penalize that
detection and result in a low detection score. Contrast
to it, our method does not have such kind of issues. It
brings stable improvements over the baseline detector
in different kind of scenes.

7 Conclusion

In this paper, we propose to integrate sparse 3D
depth information in pedestrian detection. We intro-
duce a novel descriptor based key point matching ap-
proach to obtain the sparse depth information of the
scene, and a simplified graphical model to use the re-

sulted depth information to update the image-feature-
based classification result. We show in our experi-
ment that, with minimal additional processing time,
our method could improve the detection accuracy of
the baseline detector significantly, and comparable to
a start-of-the-art detection system [3]. While for the
later one, processing a same size image will cost near
five times of the time. Currently, our method does
not have any occlusion handling mechanism, therefore
is quite weak in some crowded scenes. In the future
work, we will focus on extending current method to
become more robust against occlusion
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