14-12

MVAZ2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN

Learning Multi-Feature Human Motlon Patterns by Automated

Near-Optimal

Zhuo Chen
Department of Electrical and
neering, The University of Hong Kong
Pokfulam Road, Hong Kong, H.K.S.A.R.
zchen(@eee.hku.hk

Abstract

This paper proposes an automated near-optimal gra-
vitational clustering method for learning multi-feature
human motion patterns (HMPs). Based on the distance
distribution of all observed human trajectories in a sce-
nario, an automated criterion is proposed to determine
the similarity threshold. Based on the threshold, cluster-
ing is automatically performed and multi-feature HMPs
are accordingly learned. The proposed method defines a
human trajectory in a better manner by representing the
physical state of human as well as the motion characte-
ristic of human. Furthermore, the main advantages of the
proposed method are that (1) to derive an automated
decision criterion instead of setting a similarity threshold
manually for clustering; (2) to directly determine a
near-optimal number of clusters without exhaustively
searching for a global optimum. The proposed method has
been tested in real-world experiments and the results
show that the proposed method performs effectively in
analyzing real-world HMPs.

1. Introduction

Understanding human motion patterns (HMPs) has
been a major focus in recent years. There are a number of
related applications, such as anomaly detection [1] and
autonomous navigation robotics [2]. In real-world envi-
ronments, it is extremely difficult to manually analyze
HMPs since of an enormous amount of human trajectories
collected over period of time. Therefore, it necessitates
the use of unsupervised clustering methods for carrying
out the learning task, such as direct clustering, agglo-
merative hierarchical clustering and graph cut [3].
Whichever clustering method is adopted, they are ex-
pected to generate optimal HMPs with the most
reasonable number of clusters. Some popular clustering
methods, such as fuzzy k-means clustering [4], require a
desired number of clusters to be an input parameter.
However, since any priori knowledge of HMPs is likely
unavailable in a real-world environment, the number of
clusters could be difficult to decide. Other clustering
methods [5, 6] use a subjectively or empirically deter-
mined similarity threshold to control obtaining final
clusters without an investigation of the clustering result.
As such, some researchers have recently attempted to find
optimal clusters [7-9]. Despite of the different criteria
being relied upon, they share the same general concept
that finding optimal clusters is equivalent to searching the
minimum of a global cost function, which specifically
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evaluates the clustering result. In theory, minimum of a
global cost function can be obtained if there is sufficient
time. For NP-complete problems of this kind, such time
may extend to infinity and makes it difficult to attain a
viable solution within a certain time window.

In this paper, we propose an automated near-optimal
constrained gravitational clustering method for learning
HMPs. The advantages are mainly focused on two issues:
(1) to derive an automated decision criterion instead of
setting a similarity threshold manually for clustering; (2)
to directly determine a near-optimal number of clusters
without exhaustively searching for a global minimum. In
the proposed method, the observed human trajectories are
first represented by feature vectors that incorporate spatial
location, velocity and change of heading angle. An au-
tomated criterion is proposed based on the distance
distribution of all feature vectors for determining the
similarity threshold. Then, clustering is automatically
performed to obtain multi-feature HMPs using the simi-
larity threshold. The proposed method has been tested in
real-world experiments. By making both qualitative
evaluation and quantitative analysis, the results show that
the proposed method effectively generates near-optimal
clusters in real-world scenes.

The rest of this paper is organized as follows. In Sec-
tion 2, the proposed automated near-optimal constrained
gravitational clustering method is presented. Section 3
depicts the result of a real-world experiment produced by
the proposed method and Section 4 concludes the paper
with a brief discussion of future research work.

2. Automated Near-optimal Constrained
Gravitational Clustering

2.1. Constrained gravitational clustering con-

cept

The concept of the constrained gravitational clustering
(CGC) algorithm [10] imposes a constraint per iteration to
control the clustering process, without a need to assign a
termination condition. At the beginning of the clustering
process, each human trajectory is regarded as the initial
mean vector of a cluster. Here, t; is defined as the feature
vector of the £ human trajectory which is given as:
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where (0,7, oy(k) ) and (d,% ,d, ™) denote the or (%m and the
destination of the trajectory, respectively. v, and v~
denote the mean and the standard deviation of velocity



value at all time steps of the trajectory, respectively. ¢
denotes the curvature of trajectory. n* and n,” denote the
number of time steps of turning left and right when
compared with the moving direction at the previous time
step, respectively.

In principle, the whole clustering process is completely
controlled by the attraction F. between the ™ and /"

clusters, which is defined as:
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where G is the gravitational constant, m; and m; are the
masses represented by the number values of human tra-

jectories in the £™ and i clusters respectively, and t, and

t; are centroids of the k™ and i clusters, respectively, as
depicted in Figure 1.
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Figure 1. Parameters for gravitational attraction.

The CGC algorithm further proposed a net force acting
on a trajectory that controls the movement of the trajec-
tory and the formation of final clusters. The net force on a
trajectory t; is defined as:

F;k = thkt, xW(t,,t,)
i=1
k#i

In (3), W(-) is a force effective function (FEF) that go-
verns the effectiveness of the attractive force between
trajectories, and only those trajectories that satisfy the
FEF constraint contribute to the calculation of the net
force on t;. W(-) can take the form of a step function
which is given as:
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where Dy is the similarity threshold that controls the
clustering. More generally, #(-) can take other form of
decreasing functions versus the distance between trajec-
tories, where Dy decides the zero-effectiveness of the
attractive force between trajectories. With a non-zero net
force, the trajectory moves and the clustering process
continues until the iteratively calculated new net force on
each trajectory is zero. Thus, final clusters are formed.

2.2. Automated decision criterion for

near-optimal clusters

As the above description, Dy is a critical factor for the
formation of final clusters. In one extreme, if Dy is equals
to the maximum distance value of all pairs of trajectories,
all the trajectories are clustered together. In the other
extreme, if D=0, each trajectory represents a cluster.
When Dy is in between the two extremes, it determines
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how clustering is to be performed as well as the final
clusters. Unfortunately, the CGC algorithm did not pro-
vide a solution for deciding Dp.
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Figure 2. Distance distribution of all human trajectories.
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Figure 3. Determination of Dy.

In this paper, we propose an automated criterion for
determining D which is based on the distance distribu-
tion of all human trajectories as depicted in Figure 2. The
distance of a pair of trajectories is calculated as Euclidean
distance between the corresponding feature vectors. A set
of values for the number of bins have been tried for
comparing different obtained distribution. It is found that
the main characteristics of different distribution could be
consistently depicted except when the number of bins is
extremely large or small. In this paper, we evenly divide
the range of distance values into 50 bins, then the distance
distribution is obtained by calculating the average of all
distance values that fall into a bin as the representative
distance value of the bin, and counting the number of the
distance values that fall into a bin as the corresponding
frequency value of the representative distance value. The
two main characteristics of the distribution are that: (1) a
set of similar distance values fall into a bin that forms a
frequency peak (marked at Dp, in Figure 2), which refers
to the distance values of most trajectory pairs inside the
same cluster; and (2) another set of similar distance values
converge to be another frequency peak (marked at Dp, in
Figure 2), which refers to the distance values of the most
trajectory pairs in the different clusters. Thus, we can
separate all distance values into two groups based on a
boundary that locates at Dg,ras shown in Figure 2, which
refers to a frequency minimum between two peaks. The
left-hand group depicts the range of distance values of
that two trajectories may be in the same cluster, and the
right-hand group represents the range of distance values
of that two trajectories may belong to different clusters.

Based on the distance values in each group, we calcu-
late the mean and the standard deviation, where u; and o,
are for the left-hand group and w, and o, are for the



right-hand group. Then, two likelihood functions L,(d)
and Ly(d) are proposed based on (u;,01) and (u2,02),
which are given as:
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Here, d is the distance value between two human trajec-
tories which is also calculated as Euclidean distance
between corresponding feature vectors.

As depicted in Figure 3, L,(d) depicts a decreasing li-
kelihood that two trajectories are in the same cluster
versus an increasing distance between them, and L,(d)
represents an increasing likelihood that two trajectories
belong to different clusters versus an increasing distance
between them. Therefore, the decision criterion for Dy is
given as:

D, = argmin{CB(d) |d:L,(d)< L, (d)}' Q)

In (7), CB(d) is the clustering balance which is defined
as the summation of intra-cluster error sum A, and in-
ter-cluster error sum I’y for the clustering result obtained
based on each d value (CB(d)=A,Ty), where Ajand T';
are defined as:
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where t) and ¢, denote the i™ human trajectory in the

J™ cluster and the mean trajectory of the ;™ cluster, re-

spectively; and to denotes the global mean trajectory of
all human tra]ectorles n; is the number of human trajec-
tories in the ;™ cluster, and m is the number of final
clusters, respectively. The criterion of optimal clustering
proposed in [7] seeks the global minimum of clustering
balance values. The d value with the minimal CB(d) is
accordingly determined as Dp. In order to obtain Dg
more efficiently, we further add an optional condition
(Lo(d)=L(d)) in (7) to reduce the search range of d. Since
Li(d) and L,(d) represent the likelihood of two trajecto-

ries being in the same cluster and in the different clusters,

respectively, the d values that do not satisfy Ly(d)<L(d)
are not effective candidates for Dr. When Dy is deter-
mined, a zero-effectiveness of the attractive force
between two trajectories is decided by (4), and no

movement exists between the two trajectories accordingly.

Thus, the final clusters are obtained.
In order to further evaluate the criterion for determin-

ing D, we depict the curve of all CB(d) values in Figure 4,

in which each d value is represented by the average of all
distance values in each bin as depicted in Figure 2. As
shown in Figure 4, we especially mark the determined Dy
and the range of d values that satisfy the optional condi-
tion in (7). The curve describes how the different
similarity thresholds impact corresponding clustering
results. It can be seen that the clustering balance of the
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clustering result by Dy determined by (7) reaches the
same minimum (marked as CB,,;,(d) in Figure 4) as the
one when searching the entire range of d values. In other
words, the Dy determined by the proposed produces
near-optimal final clusters efficiently.
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Figure 4. Curve of clustering balance of similarity
threshold in the entire range.

3. Experiment

In this section, we demonstrate how the proposed me-
thod works in a real-world scene for learning HMPs. The
scenario of the experiment is based on people walking
freely in a shopping mall. A fixed-background video for
this scenario was taken and a total of 326 observed human
trajectories were accordingly extracted from the video.
Figure 5 depicts all 326 observed human trajectories in
which  red-curves and  green-curves  represent
double-directional trajectories between each pair of en-
trances/exits, respectively.

Figure 5. Observed human trajectories.

Figure 6. Learned HMPs.



The distance distribution of the observed human tra-
jectories has been depicted in Figure 2. Dr is accordingly
determined by Equation (7). HMPs are then learned by

using Drin the CGC algorithm as presented in Section 2.1.

Figure 6 shows the learned HMPs, in which green-curves
and red-curves represent the observed training trajectories
and the learned HMPs, respectively, and the red circle
labels the destination of each HMP. From the point of
qualitative evaluation, it can be seen that the learned
HMPs by the proposed method are reasonable for the
real-world experiment.

400000.000

350000.000

N'.\

i o L{d)<Ly{d)

\ g
N LT

CBoinlcl)

300000.000

250000.000

200000.000

150000.000

dustering Balance

100000.000

50000.000

0.000

L P

® P S P S PP
f FF S P &
S

» o » )
e @Qggbm“Q 87 97 67 8 9” @Qg&e“Q S S S
N AR AT AT B T 8 G T AV A

Similarity Threshold

Figure 7. Curve of clustering balance of similarity
threshold in the reduced range.

Since the ground truth cannot be easily obtained in a
real dynamically changing environment, it is difficult to
evaluate by directly comparing the clustering results with
the ground truth. Here, a quantitative evaluation is per-
formed on how close the clustering result by each
similarity threshold is to the global optimal clustering.
The evaluation is based on comparison of the clustering
balance values (CB(d)) of different clustering results.
From Figure 4, we can observe that all effective d values
for determining Dy fall into the reduced range obtained
by (7). It can be seen that 15 d values in all 50 similarity
threshold values are in the reduced range and the d value
with the minimal CB(d) value is determined as Dg. In
order to further evaluate the clustering result based on
the D from (7), we select more similarity threshold val-
ues from the reduced range and for comparison with the
clustering result by the proposed method. In the same
reduced range, 42 d values are re-sampled for perform-
ing clustering. Comparing the CB(d) values of the 42
clustering experiments with CB(Dp) by the proposed
method as depicted in Figure 7, we can see CB(Dy) is
also the minimum, which further proves that the cluster-
ing result by proposed method is the nearest to the global
optimal clustering.

4. Conclusion

In this paper, we presented an automated near-optimal
constrained gravitational clustering method for learning
multi-feature HMPs in real-world scenes. An automated
criterion is first proposed for determining the similarity
threshold based on the distance distribution of all ob-
served human trajectories. Then, clustering is
automatically performed using the similarity threshold
and multi-feature HMPs are accordingly learned. The
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main advantages of the proposed method are that (1) to
derive an automated decision criterion instead of setting a
similarity threshold manually for clustering; (2) to di-
rectly determine a near-optimal number of clusters
without exhaustively searching for a global optimum.
The proposed method also offers a better representation
for a human trajectory, which represents the physical state
of human as well as the motion characteristic of human.
From the real-world experimental results, it is concluded
that the proposed method can generate near-optimal
clusters to be HMPs. Based on the obtained research
results by the proposed method, our future research will
focus on two issues: (1) to investigate online learning of
HMPs and to further evaluate the learned HMPs in terms
of dynamic change in the environment; (2) to interpret the
learned HMPs in semantic level and based on which to
research human behavior prediction problem.
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