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Abstract 

This paper presents a method for detecting swimmers 
in swimming pool. A vision based system for locating 
individual swimmers and recognizing the activities de-
mands accurate detection of swimmer’s body parts such 
as head and limbs. Swimmer detection can be regarded as 
a background subtraction problem, which is very difficult 
due to a dynamic background with ripples, splashes, 
specular reflections, etc. Our method utilizes both local 
motion and intensity information estimated from the im-
age sequence. Local motion information is obtained by 
computing optical flow and periodogram. We devise a 
scheme that can coarsely classify the image pixels into 
three types of motion – random/stationary, ripple and 
swimming. This motion map characterizes the local mo-
tion of image pixels over a short duration. We adopt the 
mixture of Gaussians for modeling the intensity informa-
tion. Finally, by using the motion map and the Gaussian 
models, swimmers are detected in each video frame. 
Thorough tests have been performed using videos cap-
tured at daytime and nighttime, and different swimming 
styles (breaststroke, freestyle). Our method can detect 
swimmer better than using intensity information alone. 

1. Introduction 

To detect and track human, and subsequently to analyze 
and recognize human motion automatically from video 
sequence are challenging research topics. They are the 
principal concerns in various applications such as video 
surveillance [1], gait analysis [2], video segmentation and 
retrieval [3], etc. We intend to develop a vision based 
system for locating individual swimmers and recognizing 
the activities (e.g. swimming styles, drowning event). 
This paper presents a method for detecting swimmers in 
swimming pool. Swimmer detection in the aquatic envi-
ronment is very difficult due to a dynamic background. 
The water surface exhibits random motion and ripples. 
Specular reflections are commonly seen in the captured 
video frames. That means the background model-
ing/subtraction, a common first step in motion analysis 
for detecting the foreground humans, is very difficult. 

Ning et al. [4] use the least median of squares method 
for modeling individual pixels of the background scenes 
which are mainly static. Li et al. [5] propose a method 
for modeling background by the principle features and 
their statistics. The principle features for static back-

ground are color and gradient, while dynamic 
background is characterized by color co-occurrence. 
Foreground and background are classified and detected 
by a Bayesian framework. To detect and recognize hu-
man motion in the aquatic environment is more 
challenging. The background is totally non-stationary. Lu 
and Tan [6] model the entire background (the swimming 
pool) with a mixture of Gaussian distributions. The 
method has the advantages of minimum memory re-
quired to store the background model and is easier to 
update. Eng et al. [7] propose to model the background 
as a composition of homogeneous blob movements. The 
method can adapt to change of background regions over 
time. The problem of specular reflection at nighttime is 
also tackled by a filtering module. These methods use 
intensity information. Background motion such as ripple 
is not represented in the background models. 

Figure 1 shows an overview of our swimmer detection 
method. Our method utilizes both local motion and in-
tensity information estimated from the image sequence. 
We devise a scheme that can coarsely segment the image 
pixels into three types of motion – random/stationary, 
ripple and swimming. This motion map characterizes the 
local motion of image pixels over a short duration. We 
adopt the mixture of Gaussians for modeling the intensity 
information. Finally, by using the motion map and the 
Gaussian models, swimmers are detected in each video 
frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  System overview. 
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2. Local Motion Information 

In order to perform background subtraction for aquatic 
environment, the background motions of water must be 
characterized in the background model. According to airy 
wave theory, the elevation of waving water �  can be 
assumed to be superposition of sinusoidal waves, each as 
a function of position (x, y) and time t, with different 
wavelengths and velocities: 
    (1) 
 
where ( i� , i� ) is the wavenumber, i�  is the angular 
frequency, ai is the amplitude. The surface normal is: 
 
   (2) 
 
where p, q are surface gradients at a certain position (x, y) 
and can be obtained by: 
 
    (3) 
 
    (4) 
 
Assume the water surface receives direct illumination 
which is stationary over a short duration. Scene radiance, 
therefore, depends on surface normal. The observed in-
tensities of waving water over this duration can also be 
modeled as superimposed sinusoidal waves. 

The motion field of each video frame can be estimated 
via optical flow computation. Given the observed inten-
sity I = I(x, y, t), the motion field v = (vx, vy)

T, and the 
assumption of brightness constancy, 
  (5) 
Each motion vector is computed within a small patch of N 
points. 
  (6) 
 
 
where       and 
 
 
         . In our method, we set the 
patch size to 15 x 15 pixels and all gradient terms are 
computed by centered difference method. 

We expect that the motion field of waving water over a 
short duration is characterized as superposition of sinu-
soidals, while other parts of the scene exhibiting no 
motion, random motion or swimming are not. For each 
scene point, periodogram is computed for each 
zero-meaned Gaussian tapered optical flow component 
over this duration. Figure 2 shows one video frame of a 
swimmer swimming in breaststroke style. Samples of 
ripple, randomly moving water surface, and swimmer’s 
head and hand are selected as shown by the “o”, “x”, and 
“+” marks respectively. Figures 3-5 show the periodo-
grams of the selected points computed from a short 
duration of 41 frames. Periodograms of ripples exhibit 
fundamental and harmonic frequencies. Periodograms of 
randomly moving water exhibit small and random fluc-
tuations. The swimmer’s head and hands move rapidly 
and the corresponding periodograms exhibit a single peak 
at low frequency. 

Based on these observations, we devise a classification 
scheme for coarsely representing the local motion in a 
motion map. In each periodogram, the peak frequencies 

are identified. Those peaks with amplitude less than 10% 
of the range are rejected. To find out the harmonic rela-
tionship among the peak frequencies for ripple point 
identification is possible but too tedious. Instead it is 
easier to identify the random motion and the strong linear 
motion of swimmer’s head. The remaining points can be 
temporary considered as ripples. Based on the structural 
knowledge, the points of swimmer’s shoulders and hands 
can be identified in the second phase. In the first phase, 
we try to roughly identify the stationary/random motions, 
ripples and swimmer’s head. If the mean amplitude of the 
periodogram is less than a certain threshold tr, that point is 
regarded as stationary/random motion. If the amplitude of 
the first peak is larger than a certain threshold th and the 
periodograms of neighboring points are mainly of the 
same type, that point is regarded as the swimmer’s head. 
Similarity of neighboring periodograms is measured by 
counting the number of peaks in eight neighboring pe-
riodograms which should be less than or equal to eight. 
Points not identified as either of two previous classes are 
temporary regarded as ripple. In the second phase, we 
further identify the swimmer’s shoulders and hands. The 
point nearby the swimmer’s head with the amplitude of 
the maximum peak of periodogram higher than a certain 
threshold ts is regarded as swimmer’s shoulder. Then, the 
point nearby the swimmer’s shoulder with the amplitude 
of the maximum peak of periodogram higher than a cer-
tain threshold ta is regarded as swimmer’s hand. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  One video frame of breaststroke swim-
ming with sample points. 

 
 
 
 
 

Figure 3.  Periodograms of ripple. 

 
 
 
 
 

Figure 4.  Periodograms of randomly moving water. 

 
 
 
 
 

Figure 5.  Periodograms of swimmer’s head (left) 
and hand (right). 
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Figure 6a shows the motion map of swimmer’s head of 
the 41-frame breaststroke swimming sequence. White 
color represents the trajectory of swimmer’s head. The 
threshold th is 3. If the threshold is too small, there will be 
points wrongly identified as swimmer’s head as shown in 
Figure 6b. If the threshold is too large, there will be much 
less points identified as swimmer’s head as shown in 
Figure 6c. Figure 7a shows the motion map of swimmer’s 
shoulders. The threshold ts is 0.1. The search range from 
swimmer’s head is +/- 15 pixels. Figure 7b shows the 
motion map of swimmer’s hands. The threshold ta is 0.2. 
The search range from swimmer’s shoulder is +/- 30 
pixels. Figure 8 shows the final motion map. The sta-
tionary/random motion points are labeled as grey. The 
threshold tr is 0.04. The ripple points are labeled as black. 
The points of swimmer are labeled as white. 
 
 
 
 
 

  (a)  (b)  (c) 

Figure 6.  Motion map of swimmer’s head identified 
at (a) appropriate threshold, (b) small threshold, (c) large 

threshold. 

 
 
 
 

(a)  (b) 

Figure 7.  Motion map of (a) swimmer’s shoulders 
and (b) hands. 

 
 
 
 
 

Figure 8.  Final motion map. 

3. Intensity Information And Detection Of 
Swimmer 

We adopt and simplify the method of Eng et al. [7] for 
modeling local intensity information. Each video frame is 
partitioned into n1 x n2 nonoverlapping blocks Ba,b, where 
1 ≤ a ≤ n1 and 1 ≤ b ≤ n2. All pixels of the same block 
position (a, b) over a short duration are collected and 
clustered via k-means into H homogeneous regions. Each 
homogeneous region of that block position is character-
ized by the mean and standard deviation of the Gaussian 
distribution,                        and  

 
respectively, where 1 ≤ h  
 

≤ H. We set the block size to 30 x 32 pixels. 
Clean background frames are generated by vector me-

dian filtering using the same video. Figure 9 shows one 
clean background frame. Initial background model is 
generated from these clean background frames, also via 
k-means. The background models are updated by: 
   (7) 

   (8) 
 
As for the breaststroke video, we select 12 frames at an 
interval of 10 frames for each clean background genera-
tion. We use five clean background frames for initial 
background model training. The update factor � is 0.2 and 
the background model is updated at an interval of 5 
frames. 
 
 
 
 
 

Figure 9.  One clean background frame obtained 
from breaststroke swimming sequence. 

The similarity of a pixel with respect to a homogeneous 
background region can be computed using the distance 
measure: 
 
     (9) 
 
If the distance of the current pixel with respect to any 
homogeneous background region in a search space of 5 x 
5 blocks is below a certain threshold, it is regarded as a 
background pixel. As for the breaststroke video, we set 
the threshold to 3.46. 

Our swimmer detection method utilizes both local 
motion and intensity information. According to the mo-
tion map, the white label region is temporary regarded as 
the swimmer. Water ripples and stationary/randomly 
moving water surface are surely regarded as background. 
To detect the outline of swimmer in each video frame, 
each foreground point is examined with respect to the 
similarity of local intensity of background regions. The 
pixel is changed to background if the distance measure is 
less than the threshold. As for the breaststroke video, the 
best threshold is set to 2.65. The top row of Figure 10 
shows some original video frames in one cycle of breast-
stroke swimming. The middle row shows the results 
obtained using local intensity information only. Many 
background points, especially in the water ripples and 
splashes nearby the swimmer, are erroneously regarded as 
foreground. The bottom row shows the results obtained 
by our method. Erroneous foreground points are drasti-
cally reduced. The outline of the swimmer is identified 
much better. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Results of swimmer detection. 
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4. Results 

The second testing video is also a breaststroke swim-
ming. It was captured at close up view and at nighttime. 
There are strong specular reflections in each video frame. 
The swimmer swims slowly and the amplitude of swim-
mer’s movement does not differ much from the water 
surface. The top row of Figure 11 shows some original 
video frames. The middle row shows the results obtained 
using local intensity information only. The best threshold 
is set to 4.47. Many background points, especially in the 
water ripples and specular reflections, are erroneously 
regarded as foreground. The bottom row shows the results 
obtained by our method. The best threshold is also set to 
4.47. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Results of swimmer detection in night-
time breaststroke swimming sequence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Results of swimmer detection in freestyle 
swimming sequence. 

The third testing video captures two swimmers. The 
swimmer at the centre swims quickly in freestyle. An-
other swimmer at the right swims slowly in backstroke. 
The top row of Figure 12 shows some original video 
frames. The middle row shows the results obtained using 
local intensity information only. The best threshold is set 
to 3.46. Many background points, especially in the water 
ripples and splashes, are erroneously regarded as fore-
ground. The bottom row shows the results obtained by our 
method. The best threshold is also set to 3.46. 

5. Discussion And Conclusion 

The motion map is generated from a short sequence of 
about 1 cycle of the swimming movement. If the sequence 
is too short, there will be insufficient optical flow data. If 
the sequence is too long, each periodogram will contain 
many different types of motion that render the classifica-
tion complicated. At present, our method cannot detect 
swimmers in different style and speed simultaneously. In 
the future, we need to extent the motion map generation 
step for tackling multiple targets. Our method is compu-
tationally more demanding than traditional methods that 
only use intensity information. However, the utilization of 
motion information gives rise to much better results, 
especially in tackling various kinds of background defects 
such as water ripples, splashes and specular reflections. 

To conclude, we develop a method for detecting 
swimmers in swimming pool which utilizes both local 
motion and intensity information estimated from the im-
age sequence. Local motion information is obtained via 
optical flow and periodogram computation. We adopt a 
heuristic approach to generate a motion map character-
izing the local motion of image pixels over a short 
duration. Intensity information is modeled by a mixture of 
Gaussians. By using the motion map and the Gaussian 
models, our method can detect swimmers better than 
using intensity information alone. 
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