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Abstract 

The problem of inferring a missing face image which is 
at much higher resolution from lower observations is 
called as Face Super Resolution or Hallucination prob-
lem. Mostly the problem is approached in spatial domain 
by using the aligned textural information of the observa-
tion. However the ignorance of the shape information 
limits the performance of these approaches. In Resolution 
Aware Fitting (RAF) algorithm it was successfully shown 
that superior results could be obtained by utilizing both 
shape and texture components together. Though the RAF 
algorithm provides more satisfactory results, warping and 
deformation operations on high resolution image during 
the optimization could undermine its effectiveness in real 
world applications. As a remedy in this work we propose a 
faster alternative by effectively transforming the problem 
into reduced dimensions and making image warping only 
at low resolution. Experimentally it was shown that better 
reconstructions could be obtained faster than the RAF 
algorithm. 

1. Introduction 

High Resolution (HR) images are critical for image 
analysis and the posterior applications using this analysis. 
However it is known that the optics of an imaging system 
limits the amount of information that is received by the 
imager device and the imaging system yields blurred and 
under-sampled images. At that point Super Resolution 
(SR) techniques are used to overcome the limitations of 
imaging systems.  

A forward model is assumed to represent the image 
formation and the most common form used for this pur-
pose is  

 
          L HI HI n� �            (1) 

 
where IH denotes the HR image and IL is the deformed 
Low Resolution (LR) version of IH under the deformation 
operator H, which presumably consists of blurring B and 
decimation D operators; H = DB. Also n represents the 
observation gap in formation. In SR problem it is intended 
to approximate the inverse of this forward. Reaching to 
the exact backward model would not be possible due to 
the ill-posed nature of the deformation H. SR techniques 
approximate to the exact solution by regularizing the 
Least Squares (LS) solution, |IL-HIH|2. This generic ap-
proach can be expressed in Bayesian formulation as the 
MAP estimation of IH 
  

            � �ˆ arg max ( | ) ( )
H

H L H H
I

I p I I p I� .        (2) 

 
The first term p(IL|IH) refers to the LS solution (called also 
as Maximum Likelihood solution – ML solution) and 
p(IH) defines the a priori information. Depending on the 
needs, this generic problem definition can be restricted by 
making assumptions on these components of the problem. 
In order to align with the right literature, it is important to 
state the exact problem setup under consideration. In this 
work we assume that the image domain is restricted to the 
face images and the deformation operator H is known. 
This problem setup is also known as Face Hallucination 
problem in literature. Hallucination is first declared by 
Baker & Kanade [6] to describe the problem of inferring a 
missing face image which is at much higher resolution 
from LR observations. Within the scope of this work 
Hallucination definition is restricted to the case where 
single observation exists. 

Image analysis in constraint domains, such as face, 
high frequency components (or called as facial details) are 
critically important. Minor errors on these details might 
be significant both for human and machine perception. It 
is expected that an effective face hallucination technique 
can bring enough high frequency content to maximize the 
identity of the subject under processing. Basing on the 
fact that the LS solution could mostly provide the low 
frequencies, the high frequency content could only be 
gained via regularization. 

 In literature general tendency is to benefit from the 
textural priors in order to regularize the solution. Though 
there are plenty of regularizers proposed [9], here we are 
contended with mentioning only on a few good repre-
sentatives which are not only successful but also close to 
our proposal.  

In [2] Gunturk et.al. define one of these successful 
regularizers. The subspace projection statistics of the 
texture data is used as the prior information. Though it is 
possible to use other projection techniques as in [5], due 
to its computational simplicity PCA is preferred. In [1] 
Liu et.al. state that subspace statistics would bring only 
the mid frequencies, and in order to add higher frequen-
cies more customized constraints are required. In addition 
to the subspace projection statistics they use also a Mar-
kov Random Field (MRF) in order to define a joint 
locality model. Though wealthier content can be obtained 
with this non-parametric step, the results suffer from 
unrealistic texture caused by global discontinuity. This 
experiment shows that even restricted image domains 
could have excessive variety which could not be 
represented by even complex locality models.    

As an alternative to texture models, a relatively new 
trend in literature is to utilize the shape information in 
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addition to the texture. The main information that could 
be extracted from the image data are shape and texture. 

The texture-centric approaches assume that the shape 
information is known beforehand and they obtain the 
texture information in both resolutions by aligning the 
image on to a common ground via this shape information. 
Another assumption in texture-centric approaches is the 
equivalence of the shape information in both resolutions. 
However in most scenarios also the LR shape information 
may require improvement during the estimation of HR 
texture. The excessive deformation of the texture would 
create deviations on the shape information. So as in [4] 
the shape and texture information of the LR observation is 
used simultaneously in order to estimate their HR coun-
terparts. The Resolution Aware Fitting (RAF) algorithm, 
described in [4], can be considered as the state-of-the-art 
among these new approaches. The RAF algorithm is a 
generative approach and iteratively estimates the synthe-
sis parameters. In order to avoid the effects of asymmetry 
[8] the cost function is defined on the LR image space. In 
other words the synthesis is first warped back in HR and 
then deformed as   

 

� �21

2,

ˆˆ( , ) arg min ( , ( ))L H H H H H
s t

s t I HW M t T N s�� �      (3) 

 
where sH and tH are subspace representations of shape and 
texture components, NH and MH are subspace transform 
operators, W refers to image warping, and TH is the spatial 
mapping operator which defines the correspondence be-
tween the image shape information and the mean shape. 
The satisfactory results of RAF algorithm show that the 
use of shape and texture information in a generative way 
may bring significant high frequency content into the 
solution.     

In this work we propose a faster alternative for the RAF 
algorithm following the same principles: “utilize both 
shape and texture information”, “use a generative struc-
ture in order to obtain realistic high frequency content”. 
Since real world scenarios always quest for fast tech-
niques, the use of RAF algorithm could be problematic in 
real-world cases due to iterative deformation and warping 
operations on spatial domain HR image. In order to re-
lieve this computational load we suggest working fully in 
subspace by using quadratic structures. Especially when 
quadratic structures are chosen, the solution can be 
reached analytically.    

2. Approach 

First we provide the decomposition of the images and 
then the generic SR approach (2) is re-defined indivi-
dually for each component of the decomposition. Later 
we transform these relations into subspaces by using an 
effective linear transformation and the relations are 
re-organized in order to represent the backward model in 
terms of subspace variables. Note also that these steps are 
followed individually for both low and high resolutions. 

If we use IH and IL to represent spatial domain images 
in LR and HR, then their decompositions in terms of 
shape X and texture G components can be given as 

  
L L LI X G� �    ,   H H HI X G� �         (4) 

 

The reflection of this decomposition on forward and 
backward relations can be given for the texture compo-
nent as 

 
L G H GG H G n� �               (5) 

 � �ˆ arg max ( | ) ( )
H

H L H H
G

G p G G p G�       (6) 

 
and similarly for the shape component they will be  
 

         L X H XX H X n� �               (7) 

           � �ˆ arg max ( | ) ( )
H

H L H H
X

X p X X p X� .     (8) 

 
After the decomposition, now these components are 

transformed onto reduced spaces and these relations are 
re-given in terms of subspace representations of the 
components. In order to transfer the components into 
subspaces we prefer PCA. Though it is also possible to 
use other types of transformations [5], PCA is not only 
advantages in terms of theoretical and computational 
simplicity but also there are effective techniques, such as 
Active Appearance Model (AAM) [3], which automati-
cally utilize these models on the input. We use individual 
AAMs for each resolution and obtain the 4 PCA trans-
formations, for each component in each resolution. When 
ML and MH are used to denote the textural transformations 
in different resolutions and similarly NL and NH are used 
for shape components, then the component projections 
can be given as 
 
   H H H H HG M t G e� � �   L L L L LG M t G e� � �      (9) 
   H H H H HX N s X �� � �  L L L L LX N s X �� � �  

 
where s’s and t’s are subspace representations,G ’s and 
X ’s are means, and (e,ɛ)’s are representational gaps.  
Transformation of the forward models of the components; 
given in (6) and (8); into subspace can be obtained by 
putting the projections of (9) on (5) and (7). The resulting 
forward models in terms of subspace projections are  

 
               T T

L L G H H L Tt M H M t M v� �           (10)  
T T

L L X H H L Ss N H N s N v� �  
  

where vT=HGeH+nG denotes the total error in texture 
formation and similarly vS=HXɛH+nX is the total gap in 
shape formation. Note that in (10) it is assumed that the 
errors (vT and vS) are orthogonal to the transform domains. 
After the transformation of the forward models, the 
backward models of components, (6) and (8), are 
re-defined in terms of subspace representations as fol-
lows; 

  
            � �ˆ arg max ( | ) ( )

H
H L H H

t
t p t t p t�          (11) 

            � �ˆ arg max ( | ) ( )
H

H L H H
s

s p s s p s� . 

 
The ML solutions, p(tL|tH) and p(sL|sH), are approximated 
by the probability distribution of the projected total errors, 
vT and vS, 
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               T T
L T L L G H HM v t M H M t� �            (12) 
T T
L S L L X H HN v s N H N s� � . 

    
It is assumed that both noise terms have Gaussian forms,  

 
       1( | ) ~ ( , )

T T

T T
L H L v L v Lp t t N M M M� �	            (13) 

       1( | ) ~ ( , )
S S

T T
L H L v L v Lp s s N N N N� �	  

 
and the parameters of these models are estimated from the 
sample statistics of the training data. The remaining terms 
of (11) are p(tH) and p(sH). We use projection statistics of 
the samples to model these regularization terms. For 
simplicity again it is assumed that these projected samples 
constitute a Gaussian form as follows. 
 

          ( ) ~ ( , )H T Tp t N � 	              (14) 
                    ( ) ~ ( , )H S Sp s N � 	  

 
Since we model all the terms in (11) quadratic ally, the 

solution is obvious and can be expressed analytically   
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N H N N N N H N
s

s N N N N H N� �
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2.1 Shape and Texture Deformation Operators 
During our derivations we assumed that the deforma-

tion model of the image components, HG and HX, are 
given. As recall from Section 1, actually only the image 
deformation operator H is given, but nothing told about its 
decomposition: H = HG + HX. The decomposition of the 
deformation operator is made as parallel to the image 
decomposition.  

H is assumed same for all images and not dependent to 
the input, IH. Also, the shape component HX shares this 
characteristic of H. On the other hand HG is different and 
has dependency on the input. Because the texture infor-
mation requires warping and warping is determined by the 
shape information. So HG is structured with the HR shape 
information of XH.. Considering this dependency it is 
possible to approximate to the corrected form of texture 
deformation operator as 
 
                 ( ( , ), )G H LH W W H T T�             (16) 
 
where first the rows H are warped and then the columns of 
the intermediate operator are warped. Since H is same for 
the whole solution space and XH varies in a fixed interval, 
alternative HG’s can be calculated offline and stored be-
forehand easily. The space complexity of this operation 
would be quite low since H is highly sparse. 
 

3. Experiments 

Results of the experiments are demonstrated both 
quantitatively and qualitatively. Quantitative results are 
critical in order to evaluate the method for machine per-
ception. For quantitative comparisons the distances to the 
actual subspace representations of the shape and texture 
components are used. On the other hand qualitative re-
sults are good to make evaluation in terms of human 
perception. We provide the synthesis results of the models 
with the estimated projection coefficients.  

A selective set of images from the FERET database [7] 
were used for the experiment. The data set consists of 
total 100 different subject faces in the resolution of 
[360x360]. The shape information was built by manually 
annotating the images with 103 landmarks. In order to 
create the lower counterpart [45x45] of the dataset, 8 
factor decimation was applied by adding random noise 
with 0.01 variance for texture and 0.0001 variance for 
shape (noises were applied on 0-1 normalized values). 
The data set was divided into two; 75 for training, and 25 
for testing. We train two AAMs for low resolution and 
high resolution images individually. Models represent 
the %95 percentage of dataset domain and were adjusted 
to search around +/-3σ. The results were compared with 
the results of RAF algorithm [4]. 

The quantitative results, Fig.1 and Fig.2, show that the 
proposed method approximates the performance of the 
RAF algorithm by spending much less computational 
resources. Most of the computational load of the RAF 
algorithm is caused by the inverse-warping and deform-
ing the HR image during the optimization iterations. On 
the other hand the main computational load of the pro-
posed method is caused by warping the LR input during 
LR AAM fitting, and the cost of the optimization stage is 
nothing, because it is solved analytically with coefficient 
size operator multiplications. In other words the increase 
in the speed between RAF and the proposed approach is 
equal to the difference between model fitting in HR and 
model fitting in LR. Since model fitting has O(n2) com-
plexity [3] (where n refers to number of pixels), especially 
when excessive amount of decimation exists; such as 8 
factor as in the experiment, this difference is quite sig-
nificant. 
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Figure 1. Error in the estimation of HR texture 
subspace representation. Black squares refer to 
RAF reconstructions, and blue circles refer to the 
reconstructions by the proposed method. 

440



 

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25
Shape

samples

su
bs

pa
ce

 r
ep

re
se

nt
at

io
n 

er
ro

rs

 
Figure 2. Error in the estimation of HR shape 
subspace representation. Black squares refer to 
RAF reconstructions, and blue circles refer to the 
reconstructions by the proposed method. 

 
Also as parallel with the quantitative results (qualitative 
results are obtained by synthesizing from the same 
transform models, and quantitative results are the input 
for the synthesis) the qualitative results in Fig.3 are close. 

 

 
Figure 3. Selected examples from the test set. The 
reconstruction syntheses are shown for RAF and 
Proposed algorithms in second and third columns 
respectively. 

4. Conclusion 

In this work we proposed a fast solution for the face super 
resolution problem by using generative models and uti-
lizing shape and texture components together. 
Experimentally we showed that the performance of other 
approaches utilizing both shape and texture information, 
such as RAF, could be reached faster. We stated that the 
saving in time complexity is exactly the same with the 
computational saving between model fitting in HR and 
model fitting in LR. Especially when excessive amount of 
decimation exists the proposed method would be much 
more effective and applicable compared to the others.   
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