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Abstract
The lip-region can be interpreted as either a genetic

or behavioural biometric trait. Despite this breadth
of biometric content, lip-based biometric systems are
scarcely developed in the literature. A recent trend in
lip biometrics is to use a spatiotemporal texture rep-
resentation of visual speech to generate biometric fea-
tures. In this paper we make two contributions related
to the above biometric traits. We investigate whether
the application of non-linear discriminant analysis on
spatiotemporal texture improves its biometric perfor-
mance. Spatiotemporal texture representation of visual
speech results in performance that suggests that the lip
can be used as a hard biometric. We investigate the
effect of the amount of video information on speaker
verification performance. The results show that using
non-linear discriminant analysis improves speaker ver-
ification performance. Additionally, we also demon-
strate that using over 3 seconds of video is sufficient to
achieve satisfactory accuracy.

1 Introduction
Numerous measurements and signals have been in-

vestigated for use in biometric systems. Among the
most popular measurements are fingerprint, face and
voice. The latter two arise naturally in the process of
human communication. The process of human speech
production results in two information sources in the
form of video and audio signals. These signals can be
measured independently. The video information con-
tains the deformation of the lip during speech and can
be termed visual speech. This deformation can be pa-
rameterised for use as a complement to or a replace-
ment of audio-biometric information in noisy environ-
ments. Lip-region features straddle the area between
the face and voice biometric. The lip-region can be
interpreted as either a genetic (individual lip appear-
ance) or behavioural (lip dynamics) biometric trait.
The task of lip-based speaker verification involves

verifying the claimed identity of an input probe visual
speech signal. The various methods of parameteris-
ing the biometric information contained within visual
speech can be segregated into static, dynamic or hy-
brid methods depending on the amount of temporal
information used. The authors in [11] have recently in-
troduced a novel lip-biometric system. The proposed
system was the first biometric system to utilise his-
togram features which combined a method of dynamic
texture representation called Three Orthogonal Planes
(TOP) with a novel texture descriptor called Local Or-
dinal Contrast Pattern (LOCP).
The system in [11] uses linear classifiers in conjunc-

tion with the extracted histogram features to perform
speaker verification. In this paper we investigate the
effect of non-linear discriminative analysis of these fea-
tures on speaker verification performance. Addition-
ally, we also quantify the effect of reducing the amount
of video information available to the speaker verifica-

Table 1: Performance of Lip Biometric Systems for
Speaker Verification Showing Lip Performance And
Fusion Performance

SYSTEM LIP FEATURE DATABASE CLIENTS PERF.(%)
FARAJ[9, 8] DYNAMIC TI XM2VTS 295 EER 22

GOSWAMI[11] DYNAMIC TI XM2VTS 295 HTER 0.65
SANCHEZ[18] DYNAMIC TD XM2VTS 295 HTER 13.35

AUCKENTHALER[2] STATIC DAVID 7 % ERROR 2.2
CETINGUL[6] STATIC (INTENSITY) MVGL-AVD 50 EER 5.6
CETINGUL[6] DYNAMIC TD MVGL-AVD 50 EER 5.2
CETINGUL[7] STATIC(TEXTURE) MVGL-AVD 50 EER 1.7
GOMEZ[10] STATIC(GEOMETRIC) CUSTOM 50 EER 0.015

JOURLIN[12] STATIC(SHAPE) M2VTS 37 HTER 15.4
SAMAD[16] DYNAMIC TI AMP CMU 10 HTER 0.0
WARK[20] DYNAMIC TI TULIPS1 12 EER 0.0
SYSTEM FEATURE FUSION DATABASE CLIENTS PERF.(%)
BROUN[4] STATIC(GEOMETRIC),AUDIO XM2VTS 261 HTER 6.3

FARAJ[9, 8] DYNAMIC TI,AUDIO XM2VTS 295 EER 2
SANCHEZ[17] DYNAMIC TD,FACE XM2VTS 295 HTER 2.62
SANCHEZ[17] DYNAMIC TD,AUDIO XM2VTS 295 HTER 0.70
SANCHEZ[17] DYNAMIC TD,FACE,AUDIO XM2VTS 295 HTER 0.66
SANCHEZ[17] DYNAMIC TD,2FACE,2AUDIO XM2VTS 295 HTER 0.15
ABDULLA[1] HYBRID(SHAPE,INTENSITY) CUSTOM 35 EER 18.0
CETINGUL[6] HYBRID(TEXTURE,MOTION) MVGL-AVD 50 EER 3.6
CETINGUL[7] STATIC(TEXTURE),DYNAMIC,AUDIO MVGL-AVD 50 EER 0.4
JOURLIN[12] STATIC(SHAPE),AUDIO M2VTS 37 HTER 1.65

tion system. Such an analysis is relevant to the appli-
cation of lip biometrics in an industrial context.
Section 2 presents a survey of relevant work. A sum-

mary of the feature parameterisation of visual speech
is presented in Section 3. The non-linear discriminant
analysis projection is described in Section 4. The de-
veloped system is compared to the appropriate bench-
marks in Section 5. Finally, Section 6 provides some
concluding remarks.

2 Relevant Work
The use of the lip features for human identification

was first proposed through the concept of “lip-prints”
by forensic anthropologists Fischer and Locard [13].
Lip prints contained information about the lip texture.
The application of lip prints specifically as a biometric
was first introduced in [19]. A taxonomy of contem-
porary relevant work can be based on whether the ap-
proach uses static or dynamic information from the lip-
region. This also allows for a hybrid class of methods
which attempt to capture both types of information.

• Static Methods: use features extracted from the
lip-region to describe its shape, geometric proper-
ties or appearance. Additionally, most of these
methods either operate on static images using
only single-frame information or on a sequence of
speech video on a per-frame basis [12, 10, 4].

• Dynamic Methods: use features related
to the changes observed in the mouth-region
during speech production. These systems
can be further segregated into two categories:
Text-dependent(TD) systems [18] and Text-
independent(TI) speaker recognition [9, 16].

• Hybrid Methods: use both static and dynamic
information by performing either score-level or
feature-level fusion [7, 6, 1, 20, 11]

Performance Review:Commonly, lip-based features
are evaluated in terms of the performance improve-
ment they provide through fusion with more estab-
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lished traits. For the testing of speaker verification
systems, only a few databases such as [14] provide es-
tablished verification protocols that enable a fair com-
parison of systems. However, some publications use
custom-built datasets and evaluation protocols which
reduce the comparability of the systems. In these sys-
tems, the classification task is often made easier by us-
ing a relatively small ratio of trait feature dimensions
to the number of clients.
Table 1 provides an overview of the performance of

reviewed lip-biometric systems. For a more thorough
description of the various speaker verification metrics,
the reader is referred to [3]. As shown in Table 1,
the most commonly used database and protocol are
XM2VTS [14] and Lausanne Protocols respectively.
This database has 295 subjects. The best perfor-
mance obtained using lip features only on this database
is 0.65% [11] Half Total Error Rate (HTER). Multi-
modal fusion with audio features [18] yields HTER of
0.15%. In this paper, we use the XM2VTS database
to ensure the comparability of our results with these
benchmarks.

3 Feature Parameterisation

In this section, we describe the feature parameterisa-
tion of the visual speech signal as originally proposed
in [11]. The features use a novel LOCP texture de-
scriptor in a TOP configuration.

Local Ordinal Contrast Pattern: LOCP is an ex-
ample of an ordinal contrast pattern. An ordinal con-
trast encoding is used to measure the contrast polar-
ity of values between a pixel pair (or average intensi-
ties between a region pair) as either brighter than or
darker than some reference. This polarity signal in a
neighbourhood is then turned into a binary code. The
ordinal measure is invariant to any monotonic trans-
formation such as image gain, bias or gamma correc-
tion [21]. A popular example of an ordinal contrast
based texture descriptor is the Local Binary Pattern
(LBP) [15]1.
LOCP uses circular neighbourhoods for ordinal con-

trast measurement. Instead of computing the ordinal
contrast with respect to any fixed value such as that
at the centre pixel or the average intensity value, it
computes the pairwise ordinal contrasts for the chain
of pixels representing circular neighbourhoods starting
from the centre pixel. Additionally, linearly interpo-
lating the pixel values allows the choice of any radius,
R and the number of pixels in the circular neighbour-
hood, P , to form an operator. This enables the mod-
elling of arbitrarily large scale structure by varying R.
In this paper, we improve the LOCP operator origi-
nally presented by [11] to incorporate ordinal polarity
cases where there is no contrast between pixel pairs.
When computing the LOCP at location x = (x, y), we
choose P pixel pairs for ordinal contrast encoding in
Eqn. 1.

LOCPP,R(x) =

P−1∑
p=0

s(gp+1 − gp)2
p, where

s(γp) =

⎧⎪⎪⎨
⎪⎪⎩

1 γ > 0

0 γ < 0

0 γ = 0 and p = 0

s(γp−1) γ = 0 and p > 0

(1)

1LBP is used as the benchmark texture descriptor in these experiments.

The pattern is obtained by concatenating the binary
numbers from the encoding into a P -bit sequence.
LOCP represents local, pixel intensity derivatives.
LBP suggests that the ordinal relationship between

a single reference pixel and its neighbourhood contains
texture information. With LOCP, texture is repre-
sented by the contents of the entire neighbourhood,
not by the relationship of the neighbourhood with a
single reference value. LOCP therefore increases the
robustness of the texture representation since a change
in all 8 ordinal contrast encodings would require 4 al-
ternate pixel values to change as opposed to just the
single reference for LBP.

Three Orthogonal Planes: While LOCP is use-
ful as a texture descriptor, its application to the pa-
rameterisation of spatiotemporal information requires
it to be twinned with a method of dynamic texture
representation. TOP is an example of a Dynamic Tex-
ture (DT) descriptor[23]. The authors [11] combined
the LOCP texture representation with TOP to quan-
tise visual speech information. TOP is computation-
ally simple as it extracts the texture feature in each
of the three orthonormal planes(i.e. XY, XT and YT)
within a spatiotemporal volume. Figure 1a demon-
strates the lip images from three planes. In each plane,
the LOCP is extracted and the ith element of the plane-

pattern histogram, hβ
P,R ∈ R

1×2P is computed where

β ∈ {XY,XT, Y T} represents a plane.

hβ,i
P,R =

∑
x∈M

B(LOCP β
P,R(x) = i), i ∈ [0, 2P − 1] (2)

where the function B() represents a boolean indicator
and M is the region within which we are computing
the histogram.
Then the histogram of each plane is concatenated

into a single histogram, f shown in Figure 1b to pro-
vide the dynamic texture information. The best per-
forming TOP configuration is given by Equation 3.

f = [hXY
P,R,h

XT
P,R,h

Y T
P,R]

ᵀ (3)

(a) Extraction
of images using
TOP. (1) XY (2)
YT (3) XT

(b) TOP Feature Description:(1) Planar
feature parameterisation (2)Planar fea-
ture histograms (3) Concatenated his-
tograms for dynamic texture

Figure 1: TOP configuration

4 Kernel Discriminant Analysis (KDA)

The system proposed in [11] used a linear method
of classification to perform speaker verification. The
primary contribution of this paper is to investigate the
performance of non-linear discriminant analysis. This
is an example of a supervised speaker verification sys-
tem, i.e. it requires a set of training examples.
Consider a data matrix, F = [f1, f2, · · · , fm] of m

training samples. It can be easily shown that the
Linear Discriminant Analysis (LDA) projection which
maximises the ratio of between class to total class scat-
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ters can be found by optimising:

max
w

J(w) = wᵀ K A K w
wᵀ K K w (4)

where K is a kernel matrix defined as K = FᵀF and A
is a block diagonal matrix of constants, reflecting the
number of training samples in each class. Note that
each element ku,v of the kernel matrix, K, is given as
a scalar product of two training vectors, i.e.

ku,v = fᵀu fv (5)

which, where suitably normalised, measures their cor-
relation i.e. similarity. The formulation in Eqn. (4)
renders LDA to be extendable to its non-linear form
by replacing the definition of similarity in Eqn. (5)
by a non linear function, ϕ(fu, fv), of samples fu and
fv. Such a function maps the original vectors into a
higher dimensional space which potentially can be in-
finite and in which the class separation is enhanced. In
this paper, we use the Radial-basis function (RBF) as
described by:

ku,v = ϕ(fu, fv) = e−
1
σ dist(fu,fv) (6)

where dist(fu, fv) is the Euclidean distance,e(.) is the
exponential function and σ is a scalar which normalises
the distance. Following [22], σ is set to the average
Euclidean distance between all elements of the kernel
matrix on the training data.

4.1 KDA using Spectral Regression (SR-KDA)

It is shown in [5] that instead of solving the eigen-
problem in Eqn. (4), the KDA projections can be ob-
tained from the following two linear equations:

Aφ = λφ

(K+ δI)w = φ (7)

where φ is an eigenvector of A, I is the identity ma-
trix and δ > 0 is a regularisation parameter. Eigen-
vectors φ are obtained directly from the Gram-Schmidt
method. Since (K + δI) is positive definite, the
Cholesky decomposition: (K + δI) = RᵀR is used to
solve the linear equations in Eqn. (7). The obtained
result, R is a upper triangular matrix. Thus, the solu-
tion of the linear system becomes:

(K+ δI)w = φ⇔
{

Rᵀθ = φ
Rw = θ (8)

i.e., first solve the system to find vector θ and then
vectorw. In summary, the C-class SR-KDA projection
matrix, Wkda = [w1,w2, · · · ,wC−1], only needs to
solve a set of regularised regression problems and there
is no eigenvector computation involved. This results
in great improvement of computational cost compared
to LDA computations using eigen-decomposition and
allows the system to handle large kernel matrices.

Speaker Verification Systems: Mouth-region fea-
tures were extracted using per-frame localisation.
These extracted regions were then used as input infor-
mation for parameterisation using LOCP-TOP. Each
extracted region can be visualised as a cuboid con-
taining spatiotemporal information. This cuboid is
first subdivided into overlapping sub-cuboids to in-
crease the resolution of available video information.
For the jth sub-cuboid, we use LOCP-TOP to extract
histograms f j . These combined histograms concep-
tually represent the intra-modal, feature-level fusion

of extracted LOCPs in the different planes. The his-
tograms are then compared using a similarity function.
Normalised Correlation & KDA (NC+KDA): In
order to extract the discriminative features we project
the sub-cuboid histograms, f j , into KDA space as:
dj = (W kda,j)ᵀf j . The similarity of the two videos
is measured using normalised cross-correlation:

SimNC(G, I) =
∑
j

(dj
G)

ᵀdj
I

‖dj
G‖‖dj

I‖
(9)

where G and I are the input videos and i, the bin
index.

5 Experimental Set-up and Results

Visual speech videos consisted of 61 × 51 pixel
mouth-region windows localised in the XM2VTS
database video frames. LOCP and LBP feature pa-
rameters P and R were set to 8 and 3 respectively for
all planar configurations. Each spatiotemporal video
cuboid was subdivided into 5 sub-cuboids along the
XY direction and 3 sub-cuboids along the T axis.
These sub-cuboids overlapped each other by 70% to
ensure quantisation of temporally continuous informa-
tion. The experimental evaluation used the XM2VTS
and Configuration 1 (C1) and Configuration 2 (C2)
Lausanne protocol. The default value of regularisa-
tion parameter for SR-KDA, δ, was set to 0.01. Two
experiments were performed.
The first experiment aimed to quantify the effect of

reducing the amount of video information available to
both systems. The highest, lowest and average frame
lengths of the XM2VTS videos were 673, 167 and 319
frames respectively. Given a frame-rate of 25 fps, the
lowest frame length represented just over 6 seconds
of video. This experiment was run by cropping the
amount of video information supplied to the TOP sys-
tems in steps of 25 frames starting from the first frame
of video. Note that both gallery and probe videos are
cropped to the same length per experiment. The per-
formance improvement was then measured by increas-
ing the amount of video information by 25 frames up
to 150 frames i.e. 6 seconds of video. The results of
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Figure 2: HTER(%) of TOP systems Versus Visual
Speech Frame Length for C1

the improvement in performance with increasing video
information are plotted in Figures 2 and 3. They show
that by increasing the amount of video information
we gain improvement in system accuracy as expected.
The results also demonstrate that LOCP is consis-
tently better than LBP as a texture descriptor. As
a benchmark, this experiment was also performed us-
ing the Chi-squared (X2) system [11]. The accuracy of
NC+KDA is better than X2. The system also reaches a
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steady-state more quickly implying that it extracts dis-
criminative information quicker. The results demon-
strate that around 3 seconds of video information pro-
vides good HTER performance. This suggests that lip
biometrics can play an important role in applications
with short probe signal videos. The second experi-
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Figure 3: HTER(%) of TOP systems Versus Visual
Speech Frame Length for C2

ment compared the performance of using all available
video information. The aim of this experiment was
to quantify the performance of using the NC+KDA
verification system with the state of the art bench-
marks. Table 2 shows the Equal Error Rate (EER)
and HTER performance in % for the LBP/LOCP-TOP
features when input into the NC+KDA system. The
results obtained by [11] are also included for reference
which used X2 and normalised correlation with LDA
(NC+LDA). The NC-LDA system incidentally is also
the best performing lip biometric system encountered
in the literature.

Table 2: TOP systems EER and HTER (in %)

System
Configuration I Configuration II
LBP LOCP LBP LOCP

Eval Test Eval Test Eval Test Eval Test

NC+KDA 0.48 0.56 0.50 0.24 0.51 0.79 0.29 0.40
X2 [11] - - 2.99 3.86 - - 4.27 3.97

NC+LDA [11] - - 0.33 0.65 - - 0.76 0.95

Two inferences can be drawn from the results. The
first is that the NC+KDA system outperforms the
state of the art. This system compares the probe and
gallery features in KDA projected space. The perfor-
mance improvement suggests that the use of a non-
linear similarity function like RBF within the KDA for-
mulation is better than using simple vector correlation
used in LDA. It can again be seen that LOCP outper-
forms LBP in the NC+KDA system in this database.

6 Conclusions
We have demonstrated that measuring normalised

correlation in KDA space results in a better speaker
verification system than the state of the art using dy-
namic texture representation of visual speech. We have
also measured the effect of considering the amount of
video information available to a lip-based speaker ver-
ification system. The results using XM2VTS suggest
that over 3 seconds of video provides HTER perfor-
mance of less than 1%. This implies that the lip bio-
metric is useful in situations with short probe videos.
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