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Abstract

A method for detecting the facial feature points, such
as the pupil, subnasal point, and corners of the mouth,
is proposed. The proposed method is composed of two
stages: candidate detection of facial feature points and
optimization of these points by using a facial shape
model. The candidates for each facial-feature-point are
extracted from a face image by using generalized learn-
ing vector quantization classifiers, and the most suit-
able facial feature points are then selected from the fa-
cial feature point candidates obtained in the first stage.
The facial shape model is utilized to constrain the align-
ment of facial feature points while abnormal candidates
are estimated by the least-median-of-squares method.
Experiments using a large still-face dataset with vari-
ous illumination conditions demonstrate that the pro-
posed method can extract facial features precisely under
varying illumination and facial-expression conditions.

1 Introduction

Automatic facial feature detection, namely, detect-
ing facial features such as the pupil, subnasal point,
and corners of the mouth, is becoming a very impor-
tant task in applications such as accurate face identifi-
cation, face verification, and facial-expression recogni-
tion. Numerous approaches for facial feature detection
have been proposed in the last decade; however, it re-
mains a problem to determine the precise positions of
facial features under significant variations of facial ap-
pearance such as shape, pose, illumination, expression,
and occlusion.
The active shape model (ASM)[1] is one of the early

approaches for facial feature detection. It models grey-
level texture by using a local linear template and the
configuration of feature points by using a statistical
shape model. The active appearance model (AAM)[2],
which combines shape and texture in one PCA space,
is an extension of the ASM. Although these approaches
perform well if the models are built with a limited num-
ber of known subjects, the alignment performance of
ASM and AAM degrades quickly if the models are ei-
ther trained on a large dataset or fitted to unseen sub-
jects not in the training set[3].
To tackle this problem, the “shape optimized search

AAM” (SOS-AAM) [4] has been proposed. The SOS-
AAM uses a boosted classifier[5] as each facial-feature
detector and a statistical shape model to give the spa-
tial distribution of features over the face. The shape
parameters corresponding to the facial feature points
are optimized to maximize the sum of feature responses
obeying a non-linear maximization scheme. The SOS-
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Figure 1. Overview of proposed method

AAM approach outperforms the AAM approach; how-
ever, it might fail under severe conditions of facial ap-
pearance, such as uncontrolled lighting conditions, ow-
ing to the optimization scheme for facial feature points
by not discarding the abnormal output of the feature
detector.
In light of the above-described circumstances, a

novel method for detecting facial features is proposed
in the following. This method is composed of two
stages (as shown in Figure 1): first, detection of can-
didate facial feature points and, second, optimization
of these points by using a facial shape model. In the
first stage, candidates for each facial-feature-point are
determined by generating confidence maps for each fea-
ture point by using a generalized learning vector quan-
tization (GLVQ)[6] classifier. In the second stage, the
most suitable facial feature points are selected from
the candidates for facial feature points obtained in the
first stage. The facial shape model , which is formed by
concatenating the coordinate values of feature points,
is utilized to constrain the alignment of facial feature
points while abnormal candidates are determined by
least-median-of-squares (LMedS) estimation. The pro-
posed scheme enables highly accurate position detec-
tion even when the confidence of facial features cannot
be calculated correctly owing to a change in illumina-
tion or facial expression.

2 Candidate Detection of Facial Feature
Points

With the proposed method, the candidates for each
facial-feature-point, namely, candidate detection of fa-
cial feature points, are determined first. In order to
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detect feature points accurately and stably, we choose
thirteen feature points whose surrounding area con-
tains rich edge and texture. GLVQ classifiers are uti-
lized as the candidate detector. It was clarified that the
accuracy of the face detection algorithm using GLVQ is
equivalent to or better than that of the support vector
machine (SVM) and that the face detection speed is
much higher than that of SVM owing to a fewer num-
ber of reference vectors (corresponding to the support
vectors of SVM)[7].
The GLVQ algorithm and how to find the candidates

for each facial-feature-point by GLVQ are described in
section 2.1 and section 2.2, respectively.

2.1 Generalized LVQ

GLVQ[6] is a method of learning templates, as used
in nearest-neighbor classifiers, based on a minimum-
classification-error (MCE) criterion. MCE minimizes
the smoothed empirical risk defined by

Re(θ) =
1

N

N∑

n=1

K∑

k=1

�(ρk(xn; θ))1(xn ∈ ωk), (1)

where xn(n = 1, · · · , N) and ωk(k = 1, · · · ,K) de-
note training samples and classes, respectively, and
1(·) is an indicator function such that 1(true) = 1 and
1(false) = 0. Function �(·) is a smoothed loss func-
tion defined by �(ρ) = 1/(1 + exp(ξρ)), where ξ(> 0)
controls the slant of the sigmoid function, and when ξ
goes to infinity, equation (1) becomes identical to the
empirical loss in Bayes decision theory. ρk(xn; θ) is
called a misclassification measure (as explained later).
The classifier parameter θ can be updated for a given
xn to minimize the smoothed empirical risk as follows
in an online learning form called probabilistic descent:

θ ← θ − ε
∂Re(θ)

∂θ
, (2)

∂Re(θ)

∂θ
=

K∑

k=1

∂�(ρk(xn; θ))

∂θ
1(xn ∈ ωk). (3)

For nearest-neighbor classifiers, the classifier param-
eter consists of reference vectors called templates; that
is, θ = {mki|k = 1, · · · ,K; i = 1, · · · , Nk} where Nk is
the number of reference vectors in class ωk. In GLVQ,
the misclassification measure is defined as follows to
ensure convergence of reference vectors:

ρk(xn; θ) =
dk(xn; θ)− dl(xn; θ)

dk(xn; θ) + dl(xn; θ)
, (4)

where dk(xn; θ) is the squared Euclidean distance be-
tween xn and the nearest reference vector mki of
class ωk to which xn belongs; likewise, dl(xn; θ) is the
squared Euclidean distance between xn and the near-
est reference vector mlj of the other classes. GLVQ
learning rule for these two reference vectors are then
obtained as follows:

mki ←mki + εw(ρk(xn; θ))

×
dk(xn; θ)

{dk(xn; θ) + dl(xn; θ)}2
(xn −mki), (5)

mlj ←mlj − εw(ρk(xn; θ))

×
dl(xn; θ)

{dk(xn; θ) + dl(xn; θ)}2
(xn −mlj), (6)
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where w(ρk(x; θ)) = 4�(ρk(x; θ)){1 − �(ρk(x; θ))}. In
addition, to avoid getting trapped in local minima,
GLVQ employs a simulated annealing technique, in
which the slant parameter ξ is set to a small positive
number at the beginning and is increased during learn-
ing.

2.2 Candidate Detector using GLVQ

How to find the feature point candidates for each
facial-feature point by GLVQ is described in the fol-
lowing. The flow of the candidate detection stage is
shown in Figure 2. First, to clip the face region, the
face detector is applied to an input image, and the
gradient features with eight orientations are extracted.
Next, to construct a “Confidence map” for each feature
point within the face region, two-class GLVQ classifiers
are applied to calculate confidence values of each fea-
ture point. The candidates for a facial feature point
are then extracted from the confidence maps by find-
ing local maxima up to M for each facial-feature point.
An example of the confidence maps of the right pupil,
the subnasal point, and the left corner of the mouth
obtained by GLVQ classifiers is shown in Figure 3.
To train the GLVQ classifiers for finding the can-

didates for facial feature points, about 15,000 positive
and negative samples were used for each classifier. Pos-
itive samples are clipped (38 × 38 pixel) around each
landmark point (manually annotated). Negative sam-
ples are clipped in the same way, but the center of
the clipping area is located on the outside of the area
around the landmark point, named exception area,
which is the rectangle whose position, scale, and rota-
tion vary randomly (see Figure 4). Some of the training
samples are shown in Figure 5.
In the experiments described in section 4, 20 refer-

ence vectors of each GLVQ classifier were used, and
up to M = 10 candidates for each facial-feature point
were extracted.
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Figure 4. Clipping area of training samples (case
of right pupil): for positive samples (a) and nega-
tive samples (b). The cross mark is the landmark
point, the rectangle drawn with a solid line is the
clipping area, and the shaded rectangle is the ex-
ception area.
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Figure 5. Some of the positive and negative train-
ing samples: for pupil (top), subnasal point (mid-
dle), and corner of mouth (bottom)

3 Optimization of Facial Feature Points us-
ing the Facial Shape Model

To determine the optimum facial feature points from
the candidates, the facial shape model is applied to
optimize these points after the candidate facial features
are extracted.
Given a set of feature point candidates, the outlier

candidates are first found by using equation (7). The
most suitable combination of feature points is then ex-
tracted from a discrete search space with size up to
MK (K = 13 is the number of facial features) by us-
ing equation (8),

p̃ = argmin
p

med ||Tp(x
(m)
i )− zi||, (7)

F =
∑

i∈C

si
(
x
(m)
i

)
+ λ

∑

i∈C

σ
(
−||Tp(x

(m)
i )− zi||

)
. (8)

In equation (7), x
(m)
i is the coordinate value of the mth

candidate in a set of the ith extracted feature point
candidates, zi is the coordinate value of the i

th feature
point in the facial shape model, p is the parameter of
the Helmert transformation, and Tp(·) is the Helmert
transformation. In equation (8), C is the class of facial
feature point candidates except for the outliers, si(x)
is the confidence value of the facial features at point
x, and σ(·) is the sigmoid function. The first term
in equation (8) denotes the appearance likelihood of
the facial features, and the second term denotes the
geometric likelihood of alignment of the facial features.
In addition, λ indicates the coefficient of adjustment
between both terms. In this paper, the mean value of a
number of facial feature positions manually annotated
as facial shape model z is used (see Figure 1).

The proposed optimization procedure is described as
follows. First, to eliminate the influence of outliers, the

Figure 6. Example images from MBGC version
1.0 Still Face Database[8] (cropped face)

parameter of the Helmert transformation from the can-
didate facial feature points to the facial shape model
are determined by LMedS estimation using equation
(7). This process is described in detail below:

1. Select two facial features randomly from a set of
K facial features, e.g., right pupil and left corner
of mouth.

2. Determine parameter p of the Helmert transfor-
mation from facial feature point candidates x

(m)

to facial shape model z by using the two facial
features selected in step 1.

3. Use parameter p to calculate the median of the

squared residuals (i.e., med ||Tp(x
(m)
i )− zi||).

4. Repeat steps 1 through 3 to find parameter p̃ cor-
responding the least median value.

Next, F in equation (8) is calculated from parame-
ter p̃ obtained above, and the most suitable candidate
that minimizes F is found by changing the candidate

with the largest residual. For example, if x
(m)
j has the

largest residual, F through m = 1 to M is calculated,
and the candidate of the jth feature point is replaced
with the one that minimizes F .
By repeating the above-mentioned process for differ-

ent candidate facial feature points while all residuals
are kept below a threshold value, it is possible to obtain
the most suitable combination of facial feature points.

4 Experiments and Results

To evaluate the detection accuracy of the proposed
facial feature point detection method, it was tested
on facial images in the MBGC version 1.0 Still Face
Database[8]. This database mainly consists of frontal
faces taken in both indoor and outdoor environments
with various illumination and facial-expression condi-
tions. Example images from the MBGC Still Face
Database are shown in Figure 6. In this experiment,
2,000 of uncontrolled still-face images in this database
were used.
Each facial-feature detection process is considered

successful if the distance from the detected facial fea-
ture position to the true location (annotated manually)
is less than 10% of the true inter-ocular distance. The
average error of all thirteen feature points was also cal-
culated. To concentrate on the facial feature detection,
those examples in which the face detection failed were
discarded.
The results of the proposed and the previous method

(SOS-AAM[4] using a GLVQ classifier as a feature de-
tector instead of Viola and Jones’ AdaBoost cascade
classifier[5]) are presented in Figure 7. Figure 7(a)
shows that the detection rates for all facial feature
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Figure 7. Detection rates of facial feature points
in MBGC Still Face Database: (a) detection rates
of each facial-feature point and (b) threshold ver-
sus successful detection rate

points of proposed method are more accurate than the
corresponding rates for the previous method. Figure
7(b) is plotted as threshold values (i.e., radius of ac-
ceptable area) versus successful detection rate. In this
case, a detection rate corresponding to threshold 0.1
represents the rate of detection of faces with average
distance error of less than 10% of the true inter-ocular
distance. Figure 7(b) also shows that the average de-
tection error of the proposed method is less than that of
the previous method over the whole range of threshold
values. For example, with threshold < 0.1, the success
rate of the proposed method is 99.1% of all faces, while
that of the previous method is only 88.6% of faces.

The facial feature points detected by the proposed
method and the previous method were compared (see
Figure 8). As shown in Figure 8(a), facial feature de-
tection by the previous method may fail under varying
illumination and facial expressions because the confi-
dence maps were not calculated correctly. The previ-
ous method optimizes the facial feature points while
satisfying the constraints of the facial shape model un-
der the influence of outliers, so the facial feature points
are displaced as a whole. In contrast, the proposed
method can detect all facial feature points precisely
even in this condition, because of the influential outlier
is eliminated by the proposed optimization process.

(a) (b)

Figure 8. Comparison of detected positions: pre-
vious method (a) and proposed method (b)

5 Conclusion

A novel method for detecting facial features was pro-
posed. It is composed of two stages: candidate detec-
tion of facial feature point and optimization of these
points by using a facial shape model. The candidates
for each facial-feature-point are extracted from face
image by using GLVQ classifiers, and the most suit-
able facial feature points are then found from candi-
dates. The facial shape model is utilized to constrain
the alignment of facial feature points while abnormal
candidates are estimated by LMedS. Experiments us-
ing a large uncontrolled still-face dataset show that the
proposed method is precise with respect to variations
in illumination and facial expressions.
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