
KNN Kernel Shift Clustering
with Highly Effective Memory Usage

Makoto Hirohata, Tomoyuki Shibata, Kazunori Imoto, and Toshimitsu Kaneko
Toshiba Corporate Research & Development Center

{makoto.hirohata, tomoyuki1.shibata, kazunori.imoto, toshimitsu.kaneko}@toshiba.co.jp

Abstract

This paper presents a novel clustering algorithm
with highly effective memory usage. The algorithm,
called kNN kernel shift, classifies samples based on un-
derlying probability density function. In clustering al-
gorithms based on density, a local mode of the density
represents a cluster center. It is effective to shift each
sample to a point having higher density, considering
the density gradient. Estimation of density and deter-
mination of the shifting are calculated using distance
between samples. Large memory is necessary because
the number of all combinations of N samples is O(N2).
We propose a mode seeking approach using only neigh-
bor samples in order to save memory. Experimental
results show the effectiveness of the proposed algorithm
in terms of clustering accuracy, processing time, and
memory usage.

1 Introduction

Automatic categorization of images or video shots
based on semantics is useful for many applications such
as segmentation, indexing and retrieval. Clustering
is one of the fundamental solutions for unsupervised
data.
Mean shift is a nonparametric clustering algorithm

known as a solution to the mode-seeking problem [1],
[2], [3]. Mean shift is applied to many applications,
such as image categorization, segmentation, and track-
ing. For seeking the mode of samples, density gradient
and density distribution are estimated. The mode is
defined as the local maximum of density. In the proce-
dure, the density gradient is calculated by using kernel
function and band width. Each sample moves to a
point having higher density. Simplistically, each sam-
ple moves the average of samples in the neighborhood
of the target [1]. After the movements are repeated,
each sample converges on a local mode. The number
of clusters is settled automatically. Additionally, the
robustness to outliers is an advantage compared to k-
means algorithm and hierarchical algorithm, such as
single link. On the other hand, the repetition of cal-
culation for shifting samples to other points causes an
increase of computation.
Medoid shift proposed by Sheikh is one of the al-

gorithms for improving the processing time [4]. In
medoid shift, the calculation for the first movement in
mean shift is recycled. Each sample moves not to the
point having higher density, but to the nearest sample
to that. Therefore, each sample converges on a local
mode by only repeating the referring to the nearest
sample. However, the nearest sample may be the same
as each sample, and then fragmentation of clusters is

caused. The fragmentation problem and correctness
degradation have been reported [5].
Vedaldi proposed quick shift that copes with both

computation and clustering accuracy [5]. Quick shift
does not calculate the density gradient, but estimates
the density for each sample directly by using distances
between samples. Each sample shifts the nearest sam-
ple that has higher density. Since the computation cost
depends on calculation of distances and comparison of
densities, the procedure of quick shift is faster than
those of mean shift and medoid shift. Quick shift is
also effective in terms of clustering accuracy. Addition-
ally, by storing distances between samples, both den-
sity estimation and mode seeking are quickly achieved.
Therefore, parameter optimization and getting various
results by changing parameters are easy. On the other
hand, quick shift needs large memory. In order to ex-
ecute calculation process of density and determination
process of samples classified into the same cluster, dis-
tance between samples is necessary. Those two pro-
cesses cannot be executed simultaneously. In order to
execute them effectively without overlapping the oper-
ation, distance information of all combinations needs
to be stored into a memory buffer. In the case of N
samples, the memory usage is O(N2). Even though the
procedure executed using only neighbor samples cuts
off the memory, the valid number of neighbor samples
cannot be previously predicted. Accordingly, a large-
capacity memory is essential.
In this paper, we propose an alternative clustering

algorithm based on k-nearest neighbor samples (kNN
kernel shift algorithm). By extracting neighbor sam-
ples under restricted conditions, density is precisely es-
timated and associations of many samples are consid-
ered. The proposed algorithm inherits the advantages
of quick shift with small memory requirement.
The remainder of the paper is organized as follows.

Section 2 introduces quick shift algorithm investigated
in this paper, Section 3 presents the proposed algo-
rithm, and Section 4 describes experimental conditions
and results. Finally, Section 5 concludes the paper.

2 Quick Shift Algorithm

Given a set of samples {x1, x2, ..., xN} in the d-
dimensional space R

d, quick shift algorithm estimates
underlying probability density function for each sam-
ple xi,

P (xi) =
N∑
j=1

K

(∥∥∥∥xj − xi

h

∥∥∥∥
2
)

(1)

where K(·) is a kernel function, and h is the band-
width. In order to shift each sample to the nearest

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN11-4

393



�������	
����

�������	
����

��������	�

����	�

Figure 1. Concept of selection of local neighbor
samples and global neighbor samples.

�
�

�
�

�
�

�

� � � � � � �

Figure 2. A result of creation of sub-clusters.

mode, each sample xi simply moves to the nearest
neighbor y(xi, 1) that has higher density. In formu-
las,

y(xi, 1) =

{
q(xi) ‖q(xi)− xi‖ < τ
xi otherwise

(2)

q(xi) = arg max
j=1,...,N

sgn (P (xj)− P (xi))

‖xj − xi‖+ 1
(3)

where τ is a shift parameter. In the case that there is
no sample having higher density, q(xi) becomes xi. If
the distance between xi and q(xi) is smaller than τ , the
sample continues to be associated with other samples
(e.g. y(xi,m+ 1)) as follows:

y(xi,m+ 1) = y(y(xi,m), 1) (4)

where m is the number of movements. When y(xi,m+
1) is the same as y(xi,m) in Equation 4, each sample
xi is connected to the nearest mode y(xi).

3 KNN Kernel Shift Algorithm

In quick shift, after density estimation, the nearest
sample having higher density is searched for each sam-
ple. Distances between samples are essential for not
only density estimation but also searching nearest sam-
ples. Therefore, quick shift needs to store all distances,
and memory requires O(N2) space.
We propose a clustering algorithm (kNN kernel shift)

that needs only k-nearest neighbor samples for each
sample. This algorithm is executed within the O(kN)
memory requirement. A set of neighbor samples con-
sists of local neighbors and global neighbors. The con-
cept is shown in Figure 1. The local neighbors are
nearest samples of all samples. On the other hand,
the global neighbors are selected one by one from sub-
clusters. Each global neighbor sample is the nearest in
the sub-cluster to which it belongs. Here, each sample
can refer to farther samples. Accordingly, a few global

�
�

�
�

�
�

�

�
�

�
�

�
�

�

� � � � � � � � � � � � � �

Figure 3. Density distribution of quick shift on
the left and kNN kernel shift on the right.

neighbor samples make connection of many samples
possible. It is essential to create sub-clusters in the
process of referring to distances. The algorithm for
creating sub-clusters is described as follows:
[Algorithm for creation of sub-clusters]
Step 1. Store a new sample.
Step 2. Calculate distances between the new sample

and the samples already stored. If the minimum
distance is smaller than a threshold, distribute
the new sample into the sub-cluster that has the
stored sample with the minimum distance. Oth-
erwise, create a sub-cluster with the new sample.
Afterward, the information of local neighbors and
global neighbors is updated using the calculated
distances.

Step 3. If all samples were not stored, return to step
2. Otherwise, finish the process.

Figure 2 shows a result of creation of sub-clusters. The
example used 500 samples in 2-dimensional space and
each sample is described as a symbol based on the sub-
cluster ID. Euclidean distance was calculated. The
threshold is set at 0.25. Each sub-cluster should be
smaller than the clusters desired, and a lower thresh-
old is better.
The density for each sample is calculated by using

only global neighbor samples. Equation 1 becomes

P (xi) =
∑

xj∈Gi

c(xj)K

(∥∥∥∥xj − xi

h

∥∥∥∥
2
)

(5)

where Gi is the set of global neighbor samples of xi,
and c(xj) is the number of samples in the sub-cluster
including xj . Figure 3 shows the density distribution
examples of quick shift and kNN kernel shift. Samples
are the same in Figure 2 and each dot represents a
sample. We used Gaussian kernel and the band width
h is set at 0.7. In Figure 3, deep color means high den-
sity. The density calculated using only global neighbor
samples was similar to that of quick shift.
The mode seeking in kNN kernel shift consists of

4 processes: local index detection, local parent detec-
tion, global index detection, and global parent detec-
tion. Figure 4 shows the process flow diagram and the
concept of each process. Firstly, a local index l(xi)
is defined at each sample xi. The local index is the
nearest mode in the local neighbor samples.

l(xi) = arg max
xj∈Li∨xj=xi

sgn (P (xj)− P (xi))

‖xj − xi‖+ 1
(6)

Here, Li is the set of local neighbor points of xi. Each
sample xi moves to the sample yL(xi, 1) as follows:

yL(xi, 1) =

{
l(xi) ‖l(xi)− xi‖ < τ
xi otherwise

(7)

394



�	��
�!
������"�#	$

%��������	
����

������"�#	$��	�	��
��

�	��
�! ������&��	��

��

�'��(

��'��(

������&��	����	�	��
��

�	��
�!

��

%��������	
����

�'��(

��'�'��((
��

�	��
�!
������&��	�� �	'��(

��

������"�#	$��	�	��
��

������"�#	$

������&��	����	�	��
��

Figure 4. Process flow diagram and concept of
each process.

xi is associated with the mode yL(xi) (local parent)
in the same way as for quick shift (see Equation 4).
Secondly, a global index g(xi) is defined at each local
parent xp. The local parent of the global index g(xp)
has higher density than yL(xp). g(xp) is calculated as
follows:

g(xp) = arg max
xj∈Gp∨xj=xp

sgn (P (yL(xj))− P (xp))

‖xj − xp‖+ 1
(8)

where Gp is the set of global neighbor samples of xp. xp

moves to the sample yG(xp, 1) and is associated with
the mode yG(xp) (global parent) in the same way as
for local parents.

yG(xp, 1) =

{
yL(g(xp)) ‖g(xp)− xp‖ < τ
xp otherwise

(9)

Finally, each sample xi shifts to the local parent and
then shifts to the global parent.

y(xi) = yG(yL(xi)) (10)

4 Experiments

4.1 Experimental Conditions

We applied clustering algorithms to a set of 1000 im-
ages of 5 different categories: sky, sea, forest, autumn
leaves, and snow. The examples are shown in Figure 5.
Each category consists of 200 images. We resized them
into 240 x 240 pixel size and extracted co-occurrence
features [6]. The feature, which is co-occurrence of a
color matching result and a pair of edge directions, is
effective for object classification. The feature was ex-
tracted from the whole region of the resized image and
concatenated into a single feature vector. The vector
was normalized by constant value and the number of
dimensions was 1194. Figure 6 shows the histogram
of Euclidean distances of images. Four clustering al-
gorithms were evaluated: mean shift (Mean), medoid
shift (Medoid), quick shift (Quick), and kNN kernel
shift (kNN). We used Gaussian kernel. The parame-
ters h and τ were controlled for each algorithm, and
the algorithms were compared using the best condi-
tions. For improving fragmentation of clusters, single-
link hierarchical clustering was applied for each algo-
rithm as post-processing in which the threshold for the

�)! �	� ���*+��	�� .���/�
�	�6	�

Figure 5. Image samples of experimental data set
(from SOZAIJITENTM).

787�

787�

787�

787�

787�

787�

�
��
��
��
�	

�
��
�
��
� ��/	����	���
	�

�
::	�	������	���
	�

7

787�

787�

787�

787�

787�

787�

787� 78�� �87� �8�� �87� �8�� �87� �8�� �87� �8�� �87� �8�� �87� �8��

�
��
��
��
�	

�
��
�
��
�

��������	��������

��/	����	���
	�
�
::	�	������	���
	�

Figure 6. Histogram of the Euclidean distances
between images.

single link is 0.2. Those experiments were executed
with Xeon 2.67 GHz CPU.

4.2 Evaluation Criteria

Clustering results were evaluated by recall, precision
and F-measure, which is a harmonic average of recall
and precision. Those criteria are useful for retrieval,
which is an important application. Recall and preci-
sion are defined as follows:

Recall =
1

A

A∑
a=1

I∑
i=1

n(i, a)

n(∗, a) ·
n(i, a)

n(∗, a) (11)

Precision =
1

A

A∑
a=1

I∑
i=1

n(i, a)

n(∗, a) ·
n(i, a)

n(i, ∗) (12)

where A is the number of categories, I is the number
of clusters, n(i, a) is the number of images that be-
long to category a and cluster i, n(∗, a) is the number
of images in category a, and n(i, ∗) is the number of
images in cluster i. In the right side of Equation 11
and 12, the first item n(i, a)/n(∗, a) is the probability
that an image of category a is classified into cluster
i. In the right side of Equation 11, the second item
n(i, a)/n(∗, a) is the coverage ratio of images of cluster
i in category a. On the other hand, in the right side
of Equation 12, the second item n(i, a)/n(i, ∗) is the
coverage ratio of images of category a in cluster i.

4.3 Clustering Performance

Table 1 shows the results for each algorithm with
the best parameter. In kNN, the threshold for creat-
ing sub-clusters was set at 0.3. The processing time
was calculated except for the process for extracting
features. We evaluated quick shift using only 20 near-
est neighbor features for each feature (Quick(20)). In
kNN(X,Y), the number of neighbors is X + Y . For in-
stance, kNN(5,15) uses 20 neighbors. X represents the
number of local neighbor features, and Y represents the
number of global neighbor features. Quick got a better
score than Mean and Medoid. However, Quick(20) did
not maintain its performance. The neighbor features
whose numbers were limited did not correctly associate
features with the mode of density. In kNN, the com-
putation speed was equivalent to or faster than Quick,
and F-measure was improved. The memory usage in

395



Table 1. Results for each algorithm.

Algorithm F-measure Time[s] Memory[KB]

Mean 0.550 13.0 1951
Medoid 0.477 2.1 1951
Quick 0.623 0.8 1951

Quick(20) 0.552 0.6 156
kNN(5,5) 0.667 0.6 86
kNN(5,10) 0.647 0.6 125
kNN(5,15) 0.647 0.7 164

Table 2. F-measure for each algorithm.

Algorithm X=5 X=10 X=15

Quick(X) 0.148 0.305 0.504
kNN(X,5) 0.667 0.659 0.668
kNN(X,10) 0.647 0.675 0.688
kNN(X,15) 0.647 0.675 0.681

Table 1 means the storage for distances of all combi-
nations of samples in Mean, Medoid, and Quick. In
contrast, Quick(20) and kNN store distances and IDs
of neighbor samples. Additionally, in the process of
creating sub-clusters, kNN stores a sub-cluster ID for
each sample, and the number of samples that belong to
the sub-cluster. The memory usage of kNN was one-
tenth of those of Mean, Medoid, and Quick or less.
Table 2 shows the relationship between F-measure

and the number of local neighbor features in Quick
and kNN. The addition of local neighbor features con-
tributed to improvement in the F-measure. The mode
seeking was improved by using neighbor features be-
longing to a same cluster. Additionally, in kNN, the
range of the seeking was expanded effectively using
global neighbor features. Therefore, setting the num-
ber of local neighbors and those of global neighbors is
easy and high performance is expected.
Figure 7 shows the relationships between recall and

precision in Quick and kNN when the parameters h
and τ were changed. KNN achieved higher recall and
precision than Quick.
In kNN, since the appropriateness of the result of

sub-clusters influences the accuracy of clustering, the
robustness to the threshold for sub-clusters is impor-
tant. Figure 8 shows the relationships between F-
measure and the threshold, and Figure 9 shows the
coverage ratios of samples in sub-clusters having two
or more samples and the largest sub-cluster. The F-
measure became robust to the threshold when using
more global neighbor features. On the other hand, the
F-measure was worse in the case that the threshold
was low such as 0.1 or high such as 0.6. This is be-
cause, in the former case, there were few sub-clusters
including two or more samples, and also, in the latter
case, a sub-cluster included most of samples. Hence,
kNN(5,15) is effective for achieving high performance
in terms of F-measure, processing time, and memory
usage.

5 Conclusion

This paper has presented a novel clustering algo-
rithm with highly effective memory usage and applied
it to image categorization. The proposed algorithm,
executed using fewer samples than for quick shift, pre-
cisely estimates relationships between samples in den-

�7;

�7;

<7;

�77;

��
��
��
��
�

=�
�)
)��'�>�(
)��'�>�7(
)��'�>��(

�7;

�7;

�7;

<7;

�77;

7; �7; �7; �7; <7; �77;

��
��
��
��
�

������

=�
�)
)��'�>�(
)��'�>�7(
)��'�>��(

Figure 7. Relationships between recall and preci-
sion in Quick and kNN.

7 ��7
78�77�
78��7�
78�77�
78��7�
78�77�
78��7�
78�77�
78��7�
78�77�


�
�
��
�
��

=�
�)
)��'�>�(
)��'�>�7(

78�77�
78��7�
78�77�
78��7�
78�77�
78��7�
78�77�
78��7�
78�77�
78��7�
78�77�

787�� 78�7� 78�7� 78��� 78�7� 78��� 78�7� 78�7� 78?7�


�
�
��
�
��

���������	���	���������

=�
�)
)��'�>�(
)��'�>�7(
)��'�>��(

Figure 8. Relationships between F-measure and
thresholds for sub-clusters.

7;

�7;

�7;

�7;

<7;

�77;
�
��
��
��
�	
�
��
��
	

��
	�
��

 �
��

�*�����@��	
��	�����	��

7;

�7;

�7;

�7;

<7;

�77;

787�� 78�7� 78�7� 78��� 78�7� 78��� 78�7� 78�7� 78?7�

�
��
��
��
�	
�
��
��
	

��
	�
��

 �
��

���������	���	���������

�*�����@��	
��	�����	��

Figure 9. Coverage ratios of samples in sub-
clusters having two or more samples (Two or
More) and the largest sub-cluster (The Largest).

sity distribution. We showed that the proposed algo-
rithm achieved the best performance in terms of clus-
tering accuracy, processing time, and memory usage.
Subjects for future research include evaluation of

other tasks, such as documents and human images,
and investigation of other applications, such as image
segmentation. In the proposed algorithm, since the
threshold for creating sub-clusters is sensitive to the
accuracy, automatic optimization of the threshold is
important.

References

[1] K. Fukunaga, et al.,“The Estimation of the Gradi-
ent of a Density Function, with Applications in Pat-
tern - Recognition,” IEEE Trans. Information Theory,
21(1):32-40, 1975.

[2] Y. Cheng, “Mean Shift, Mode Seeking, and Cluster-
ing,” IEEE Trans. PAMI, 17(8):790-799, 1995.

[3] D. Comaniciu, et al.,“Mean Shift: A Robust Approach
Toward Feature Space Analysis,” IEEE Trans. PAMI,
24(5):603-618, 2002.

[4] Y. A. Sheikh, et al., “Mode-seeking by Medoidshifts,”
In Proc. ICCV, 2007.

[5] A. Vedaldi, et al.,“Quick Shift and Kernel Methods for
Mode Seeking,” In Proc. ECCV, 705-718, 2008.

[6] S. Ito, et al.,“Object Classification Using Heteroge-
neous Co-occurrence Features,” In Proc. ECCV, 209-
222, 2010.

396


