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Abstract

This paper proposes a parallelization method for 3D
shape reconstruction with voxel-based multiview stereo.
In our approach, a target voxel space is divided into
several domains, each of which is assigned to a differ-
ent PE (processing element) to be processed in parallel.
To reduce the amount of inter-PE communication, our
proposed method divides the voxel space by planes pass-
ing through a virtual viewpoint computed from a config-
uration of actual viewpoints. Moreover, to reduce the
idle time of PEs, our method performs dynamic load
balancing flexibly, based on the estimated effect of it.
Experimental results indicate that our method can re-
duce the processing time by 35% at 32 PEs as compared
to a naive parallelization method.

1 Introduction

Multiview stereo is an approach for reconstructing
3D shape from a set of images taken at different view-
points. Because of a wide range of applications, various
methods have been proposed for this approach [1, 2].
A voxel-based method is a promising technique for the
multiview stereo. In this method, a subject 3D space is
divided into voxels, and the 3D shape is reconstructed
by determining whether or not each voxel is on an ob-
ject boundary, based on the photo-consistency of the
voxel. The voxel-based method offers high accuracy to
the 3D shape reconstruction by integrating the infor-
mation in multiple images. However, as the numbers of
images and voxels increase, it requires huge processing
time for determining object boundary voxels.

Several techniques have been employed for reduc-
ing the processing time of the multiview stereo. Visual
hulls [3] and hierarchical voxel spaces [4] are applied to
pruning unnecessary voxel processing; however, their
effectiveness is affected by object shapes. Multiproces-
sor systems have been used for processing individual
images in parallel and/or the steps of 3D shape recon-
struction in a pipeline fashion [5]. Their effectiveness
barely depends on object shapes; however, it is dif-
ficult to proportion their effectiveness to the number
of PEs (processing elements). The approaches using
GPU (graphic processing unit) have been proposed for
processing voxels in parallel [6]. Although they are
highly effective, their efficiency decreases for large scale
subjects (a large number of images and voxels) due
to an increase in the amount of communication be-
tween GPU and CPU. To accomplish further speedup
for large scale subjects, a method should be devised
such that it achieves efficient parallel processing.

In this paper, we investigate an approach of voxel
space division and propose a parallelization method to
speed up the voxel-based multiview stereo. Our ap-
proach divides a target voxel space into several do-

mains and assigns these domains to individual PEs
(e.g., CPUs, GPUs, etc.). To reduce the amount of
inter-PE communication, our method divides the voxel
space by planes passing through a virtual viewpoint
computed from a configuration of actual viewpoints.
Moreover, to reduce the idle time of PEs, our method
performs dynamic load balancing flexibly, based on the
estimated effect of it. Our method can proportion its
effectiveness to the number of PEs, and consequently
we can expect that this method works well for the 3D
shape reconstruction on large scale subjects by increas-
ing the number of PEs.

2 Voxel-Based Multiview Stereo

2.1 Determining object boundary voxels

Suppose that N images In(n = 1, 2, . . . , N) are used
for 3D shape reconstruction, and each In is taken at
a viewpoint on. As shown in Figure 1, the subject 3D
space is divided into voxels v(j, k, l). A whole set of v
is represented by the voxel space V . By projecting a
voxel v onto each In, a region rn(v) is obtained.

The voxel-based multiview stereo reconstructs the
3D shape by determining whether or not each v is on an
object boundary, based on the photo-consistency pc(v),
i.e., the similarity in the color appearances of v among
all rn(v). When v on an object boundary is projected
onto In, the same object surface appears in all rn(v),
and then it gives a high pc(v). On the other hand, if v
isn’t on an object boundary, a different object surface
(or the background) appears in each rn(v), and it gives
a low pc(v). Consequently, information in the images
is integrated into the photo-consistency, from which
object boundary voxels can be determined.

However, for several reasons (e.g., an object sur-
face is occluded in part of the images, different ob-
ject surfaces have similar colors, etc.), there are some
cases where object boundary voxels cannot be deter-
mined correctly from the photo-consistency. To resolve
this, many existing methods introduce geometric con-
straints [7, 8]. As shown in Figure 2, let φn(v) be a
set of voxels on the straight line passing through on
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Figure 1. Voxel v and its projection rn(v).
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Figure 2. Geometric condition.

and v. The subsets φ′n(v) and φ′′n(v) represent the
voxels in φn(v) before v and behind v, respectively.
If v is on an object boundary and visible from on,
the voxels φ′n(v) cannot be on object boundaries and
φ′′n(v) cannot be seen from on. This condition is im-
posed as the geometric constraints; therefore, to deter-
mine whether v is on an object boundary, not only the
photo-consistency of v but also the states of the other
voxels in each φn(v) should be referred to, and those
for all n need to be integrated (i.e., the states of the
voxels Φ(v) = ∪N

n=1φn(v) are needed to determine v).
For a large number of images and voxels, imposing this
geometric constraints requires huge processing time.

2.2 Introducing geometric constraints

There are several approaches for voxel-based multi-
view stereo with the geometric constraints. Although
our parallelization method is applicable to most of
them, we focus on Kawakami’s method [8] in the fol-
lowing. Figure 3 shows the algorithm of Kawakami’s
method. This method computes the certainty e(v) that
each v is on an object boundary, and refines it itera-
tively from the states of other voxels to satisfy the
imposed constraints.

At Step 1, the certainty e(v) is computed as a
weighted average of en(v) for all n by

e(v) =
∑

n wn(v)en(v) /
∑

n wn(v). (1)

In Eq. (1), en(v) denotes the certainty that v is on
an object boundary which can be seen from on, and
wn(v) denotes the weight for on. The certainty en(v) is
computed from the photo-inconsistency pin(v) instead
of the photo-consistency by

en(v) = (pimax − pin(v)) / (pimax − pimin), (2)

where pimax and pimin are the maximum and mini-
mum of photo-inconsistency pin(v) for all v and n. The
photo-inconsistency pin(v) is computed by

pin(v) =
P

m �=n wm(v)wn(v)×SSDm,n(v)
P

m �=n wm(v)wn(v) , (3)

where SSDm,n(v) represents the sum of squared dif-
ferences between rm(v) and rn(v). The weight wn(v),
which is the certainty that v satisfies the geometric
constraints, is computed by

wn(v) =
maxu∈φn(v) en(u)−maxu′∈φ′

n(v) en(u′)
maxu∈φn(v) en(u)−minu∈φn(v) en(u)

×maxu∈φn(v) en(u)−maxu′′∈φ′′
n(v) en(u′′)

maxu∈φn(v) en(u)−minu∈φn(v) en(u) . (4)

1: // T1: iteration bound for Step 1
2: // T2: iteration bound for Step 2
3: for t1 = 0 to T1 − 1 do
4: // Step 1
5: for all v ∈ V do
6: compute e(v) by Eqs. (1)∼(4)
7: push all v ∈ V in set Vproc

8: for t2 = 0 to T2 − 1 do
9: // Step 2

10: for all v ∈ Vproc do

11: compute e
(t2+1)
n (v) by Eqs. (5)∼(7)

12: if ∀n e
(t2+1)
n (v) = e

(t2)
n (v) = γ then

13: pop v off set Vproc

14: end if
15: end for
16: end for
17: end for
18: end for
19: // Step 3
20: determine object boundary voxels v from e(v)

Figure 3. Algorithm of Kawakami’s method.

At Step 2, each certainty en(v) is refined iteratively
according to the states of the voxels in Φ(v). Let Vproc

be the set of all voxels which need the refining process.
The certainty e

(t2+1)
n (v) at the t2 + 1 th iteration is

computed from the state at the t2 th iteration by

e
(t2+1)
n (v) = e(0)(v)×

(
A

(t2)
n (v)

)α

× (
B(t2)(v)

)β
, (5)

where A
(t2)
n (v) is defined as a relative value of e

(t2)
n (v)

in each φn(v), and B(t2)(v) is defined as a weighted
average of A

(t2)
n (v) for all n. In Eq. (5), α and β are

given constants. The values of A
(t2)
n (v) and B(t2)(v)

are computed by

A
(t2)
n (v) = e(t2)

n (v)−minu∈φn(v) e(t2)
n (u)

maxu∈φn(v) e
(t2)
n (u)−minu∈φn(v) e

(t2)
n (u)

, (6)

B(t2)(v) =
∑

n wn(v)A(t2)
n (v) /

∑
n wn(v). (7)

In the iteration of Step 2, if e
(t2+1)
n (v) is less than a

given threshold γ, its value is set to γ, and if e
(t2+1)
n (v)

is greater than 1 − γ, its value is set to 1 − γ. When
e
(t2+1)
n (v) = e

(t2)
n (v) = γ for all n, the iteration for

such v is terminated and v is removed from Vproc. At
Step 3, in each v, the sum of wn(v) is calculated for
n where en(v) is a local maximum value. If the sum
of wn(v) is greater than a given threshold δ, such v is
determined to be an object boundary voxel.

As is described above, Kawakami’s method refines
the certainty e(v) at each voxel by using the geometric
constraints; hence, it allows to improve the accuracy
in determining object boundary voxels.

3 Parallelization Method

3.1 Gradient-dependent domain division (GDD)

For the voxel-based multiview stereo, domain divi-
sion is an effective approach to the parallelization, since
the computation for each voxel v is independent of one
another as shown in Figure 3. However, each v needs
data on Φ(v) for refining e(v); therefore, a naive do-
main division, which divides the voxel space V horizon-
tally (or vertically) into P domains Vp(p = 1, 2, . . . , P )
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Figure 4. Voxel space dividing by GDD (P = 4).

to be processed in parallel at P PEs PEp, causes huge
inter-PE communication for data exchange and in-
creases the total processing time.

We propose a new domain division method named
Gradient-dependent Domain Division (GDD). GDD
divides V focusing on the gradient of Φ(v) to reduce
the inter-PE communication. The procedure of GDD
is described as follows;

1. A virtual viewpoint ov is computed as the average
of viewpoints on by ov = (

∑N
n=1 on)/N , and a row

of on is approximated by a straight line ol. The co-
ordinate system XY Z is transformed to X ′Y ′Z ′,
where the origin and X ′ axis are set at ov and ol.

2. For all v, the gradient g(v) of a plane pass-
ing through ov and v is calculated by g(v) =
y′(v)/z′(v), where y′(v) and z′(v) denote the dis-
tances between ov and v along the Y ′ and Z ′ axes.

3. All v are sorted into descending order of g(v), and
V is divided into P domains Vp so that each Vp

includes the same number of voxels.
4. The voxel in each Vp is assigned to PEp.

Figure 4 illustrates an example of GDD (P = 4). Com-
pared to the naive domain division, GDD makes it pos-
sible to reduce the amount of data to be exchanged be-
tween PEs because the data on each Φ(v) are mostly
to be stored in the same PE. Note that this reducing
effect of GDD is obviously larger in cases where view-
points lie on a straight line.

3.2 Flexible dynamic load balancing (FDLB)

As shown in Figure 3, at the end of every iteration in
Step 2, each PE must wait for the other PEs to com-
plete the processes assigned them. Even though the
same number of voxels are initially assigned to each
PE, it gradually differs as the refinement of e(v) pro-
ceeds because the iteration counts to terminate the re-
finement differ from voxel to voxel. Such imbalanced
computation loads result in the increase of processing
time due to the wasted waiting time. Therefore, Dy-
namic Load Balancing (DLB) should be employed.

DLB dynamically balances the computation loads of
all PEp. Although the computation load of each PEp

cannot be known beforehand, it can be estimated by
the number of voxels assigned to PEp. Let ‖Vproc‖ be
the number of all voxels which need the refinement of
e(v) and ‖Vp‖ be the number of voxels assigned to each
PEp from Vproc. When the difference in ‖Vp‖ increases,

1: // T2: iteration bound for Step 2
2: push all v ∈ V in set Vproc

3: for t2 = 0 to T2 − 1 do
4: // Step 2
5: counting ‖V∗‖max, ‖V∗‖avg , and ‖Vproc‖
6: if (‖V∗‖max − ‖V∗‖avg)/‖Vproc‖ > C2/C1 then
7: //DLB
8: reassign Vp to PEp

9: end if
10: for all v ∈ Vproc do

11: compute e
(t2+1)
n (v) by Eqs. (5)∼(7)

12: if ∀n e
(t2+1)
n (v) = e

(t2)
n (v) = γ then

13: pop v off set Vproc

14: end if
15: end for
16: end for

Figure 5. Algorithm of FDLB.

DLB reassigns Vproc to each PEp so as to equalize ‖Vp‖
in all PEp. However, the reassigning procedures incur
some overheads.

Here, we consider the condition that DLB should be
performed. Let Tred and Tinc be the processing time
reduced and increased by DLB, respectively. Obvi-
ously, DLB should be performed only when Tred > Tinc.
Therefore, to achieve well-timed DLB, we have to es-
timate Tred and Tinc beforehand. Let ‖V∗‖max and
‖V∗‖avg be the maximum and average numbers of all
‖Vp‖. Without DLB, the processing time for an itera-
tion of Step 2 is the same as the maximum processing
time of all PEp and it is proportional to ‖V∗‖max. If
computation loads of all PEp are ideally balanced, the
processing time is the same as the average processing
time of them and it is proportional to ‖V∗‖avg. On
the other hand, the overhead of DLB is proportional
to ‖Vproc‖ because DLB reassigns the voxels in Vproc

to each PEp. Then, Tred and Tinc can be estimated by

Tred = C1 (‖V∗‖max − ‖V∗‖avg) , (8)
Tinc = C2‖Vproc‖, (9)

where C1 and C2 correspond to unit time for process-
ing and reassigning a voxel, respectively, and they de-
pend on a used system. Thus, the condition that DLB
should be performed is derived as follows:

(‖V∗‖max − ‖V∗‖avg) /‖Vproc‖ > C2/C1, (10)

where the left term is obtained by counting ‖Vp‖ at
each PEp, and the right term (i.e., a threshold of the
condition) is determined by preliminary experiments
on the system. Using Eq. (10), DLB can be performed
flexibly. We named it FDLB (Flexible DLB).

Figure 5 shows the modified procedures of Step 2
employing FDLB. Before starting the original proce-
dures of Step 2, each PEp counts ‖Vp‖ and sends it to
all PEs so that they can decide whether DLB should
be performed or not based on Eq. (10).

4 Experimental Results

We conducted the experiment of 3D shape recon-
struction to evaluate the effectiveness of our paral-
lelization method. The specification of the cluster ma-
chine used in the experiments is listed in Table 1. As
inputs for the voxel-based multiview stereo, four im-
ages in the well-known data set “Temple” [9] were used.
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Table 1. Specification of cluster machine.

CPU AMD Opteron 2.0GHz
Memory PC3200 ECC Registered, 2GB

Number of nodes 16 (2 PEs/node)
OS SuSE Linux Enterprise Server 8

I1 I2 I3 I4

Figure 6. Input images used in the experiments.

These images I1 ∼ I4 were taken at viewpoints placed
along an arc (Figure 6). The voxel space consisted
of 1003 voxels. The iteration bounds T1 and T2 in
Kawakami’s method were set to 5 and 10. Other con-
stants were set as α = 1.0, β = 1.5, γ = 0.001, and
δ = 1.0. Based on the preliminary experiments, the
threshold C2/C1 in Eq. (10) was set to 0.05.

Figure 7 shows the processing (communication and
calculation) time and communication time by varying
the number of PEs, where the voxel space was divided
by HDD (naive Horizontal Domain Division) and GDD
(our proposed method). This result indicates that the
calculation time of both HDD and GDD decreases as
expected with the increase of the number of PEs. It
means that the voxel space division is effective for the
parallelization of voxel-based multiview stereo. The
communication time of GDD is much smaller than that
of HDD, and the difference between them increases as
the number of PEs increases. This is because GDD
saves inter-PE communication by assigning a large part
of the data on each Φ(v) to the same PE.

Figure 8 shows the processing time with FDLB. This
result indicates that FDLB enables to reduce process-
ing time in both HDD and GDD. However, the effi-
ciency in HDD declines rapidly with the increase in
the number of PEs because FDLB raises the amount
of inter-PE communication. In contrast, the efficiency
in GDD doesn’t decrease as in HDD, since GDD can
reduce the amount of inter-PE communication.

These experimental results, GDD with FDLB re-
duces the processing time by 35% at 32 PEs as com-
pared to HDD without FDLB, show that our method
offers efficient parallel processing for 3D shape recon-
struction with the voxel-based multiview stereo. As
mentioned above, the viewpoints where I1 ∼ I4 were
taken didn’t lie on a straight line exactly. However,
GDD worked well for these viewpoints. It means that
GDD can permit the deviations of viewpoints from a
straight line at least to some degree.

5 Conclusions

In this paper, we have proposed an efficient paral-
lelization method for the voxel-based multiview stereo.
Our approach divides the voxel space into several do-
mains, each of which is assigned to a different PE to
be processed in parallel. Our proposed method di-
vides the voxel space in order to reduce the amount
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culation) time, (b) Communication time.
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Figure 8. Processing time with FDLB.

of inter-PE communication, and performs DLB flexi-
bly to reduce the idle time of PEs. Through the ex-
periments, we have confirmed the effectiveness of our
method. In future work, we plan on conducting ex-
periments for larger scale subjects and extending our
method to adapt arbitrary viewpoint configurations.
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