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Abstract 

Recently, interest point detectors and descriptors have 
become prominent in the field of computer vision and are 
typically used to determine correspondences between two 
images of the same scene.  We present a design proce-
dure for the Finite Element Laplacian Feature (FELF) 
Detector which is similar to the multi-scale approach 
used in the SURF detector and detects blob like features. 
We illustrate the accuracy of the FELF algorithm in 
comparison to well known existing techniques and high-
light the computational efficiency of the proposed 
approach. 

1. Introduction 

Many local features may be extracted from images; for 
example, corners correspond to points at which the image 
data have high curvature. Many existing corner detectors 
find not only real corner points but also other "interesting 
points" that may not strictly be recognised as corners [1,2]. 
However, for some particular applications the ability to 
detect interesting points that are robust to changes within 
the image is seen as a more desirable characteristic than 
specifically detecting only real corner points. Blobs are 
another interesting type of feature prominent in images; 
generally blobs can be thought of as regions in an image 
that are brighter or darker than the surrounding regions. 
With a detected blob we also have an exact point or pixel 
position relating to the blob maximum or minimum that 
may be regarded as an interest point. Blob-like features 
provide complementary information not obtained from 
corner detectors [3]. 

The Laplacian of Gaussian [4] is a popular blob de-
tector that detects blob features in an image. However, a 
limitation of this detector is that features within an image 
may appear at many different natural scales depending on 
what they represent, whereas the detector operates at only 
a single fixed scale. In order to deal with the natural scales 
at which features may be present, multi-scale detectors 
have been developed. A multi-scale Laplacian of Gaus-
sian detector may be achieved by appropriately adjusting 
the size of the Laplacian of Gaussian kernel to obtain a set 
of kernels that are then applied to the image. Thus, we 
obtain a set of features detected at multiple scales. How-
ever, by applying a detector at multiple scales we increase 
the difficulty in matching features, as the same feature 
may be represented at multiple scales [3]. A scale in-
variant approach seems more appropriate, where the 
characteristic scale of the feature is identified. This 
characteristic scale is the scale that best represents the 
scale of the feature, and it is not related to the resolution of 
the image, but rather the underlying structure of the de-

tected feature [3]. By using an operator to measure the 
response of the same interest point at different scales, the 
scale at which the peak response is obtained can be iden-
tified as the characteristic scale.  

The Difference of Gaussian detector [2] approximates 
the Laplacian of Gaussian detector by computing the 
difference between two Gaussian smoothed images. This 
approach was used in the SIFT detector [2] to compute an 
efficient scale space pyramid by sub-sampling images and 
convolving with differently sized kernels. Maxima and 
minima are determined by examining the response from 
the Difference of Gaussian function in the 9-pixel 
neighbourhood on the same scale level, and then by ex-
amining the response at the scale level above and the scale 
level below. A similar approach is used in the Hes-
sian-Laplace blob detector [5], where second order 
Gaussian smoothed image derivatives are used to com-
pute the Hessian matrix. This matrix captures the 
important properties of the image structure. Using a 
multi-scale approach where kernel sizes are increased, the 
trace and the determinant of the Hessian matrix are 
thresholded and blob features detected.  The SURF de-
tector [6] uses integral images [7] to provide a multi-scale 
approach in which simple box filter kernels can be scaled 
efficiently. An approximate determinant of the Hessian is 
used to localise features both in space and scale.  

Further detectors based on the SURF detector have 
been proposed including the FESID detector [8] that uses 
a first order differential operator with combined smooth-
ing to detect corner regions, and a second order 
differential operator with an approximate determinant of 
the Hessian to detect the characteristic scale. In this paper 
we present a finite element based blob detector based on 
techniques used in the FESID detector [8] and ideas from 
the SURF detector. In Section 2 we describe the proposed 
multi-scale detector and in Section 3 performance is 
evaluated with respect to repeatability and feature 
matching using the evaluation techniques presented in [5], 
highlighting improvements when compared with other 
well known interest point detectors and descriptors. We 
also provide examples of comparative computational 
performance evaluation with other well known interest 
point detectors in Section 4 and provide a summary in 
Section 5. 

2. Finite element detector 

The Finite Element Laplacian Feature (FELF) detector 
uses finite element based second order derivative opera-
tors to detect blob-like features that are robust to various 
transformations. A multi-scale approach is developed 
similar to that presented in the SURF detector where 
integral images are embedded for speed and mask sizes 
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are incremented to produce a multi-scale operator.  
 
2.1 Second-order operator 
 
The second order differential operator used in the blob 
detector is developed through the use of the finite element 
framework using a virtual mesh with nodes placed at pixel 
centres. Using a neighbourhood centred on node i, a 
piecewise linear basis function and a Gaussian test func-
tion, the second order directional derivative functional is 
defined by 
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is centred on node i and � �ii yx , are the coordinates of the 

nodal point j.  In equation (1) �	 i  is a Gaussian test 

function restricted to a neighbourhood �
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The integrals are computed as sums of individual ele-
ment integrals and are computed only over the 
neighbourhood �

i� , rather than the entire image domain 
�  as �	 i  has support restricted to �

i� . 
 

2.2 Image representation 
 
In order to provide an efficient image representation, the 
finite element blob detectors have incorporated the use of 
integral images introduced by Viola and Jones [7]; more 
recently integral images have been a key aspect of the 
SURF detector and have previously been successfully 
used with the FESID detector [8], as integral images pro-
vide a means of fast computation using small convolution 
filters. 

If an intensity image is represented by an array of  
nn �  samples of a continuous function � �yxu , of image 

intensity on a domain � , then the integral image value 
� �x�I  at a pixel location � �yx,�x  is the sum of all 

pixel values in the original image I  within a rectangular 
area formed by the origin of the image and location x, and 
can be described as, 
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The time and number of operations required to compute 
the image sum over any rectangular area of the integral 
image is independent of the size of that region, as four 
memory reads and three additions are required to compute 
this region, or indeed any rectangular region regardless of 
its size. 

 
2.3 Finite element Laplacian detector 
 
An integral image is first constructed using the method 
outlined in Section 2.2 and the blob detection stage is then 
performed. Using the same multi-scale approach as the 
SURF detector we select the first filter size of a 

99� pixel region. In our approach we partition the 
99� pixel region slightly differently as illustrated in 

Figure 1.  

     
         (a)                      (b) 

Figure 1. 99�  filter partitioning for (a) SURF and 
(b) FELF detector 

This approach differs from the SURF detector in that we 
need to compute 9-regions for each operator, rather than 
the 3 or 4 regions that are computed with the SURF de-
tector. The filter partitioning allows the operator values to 
be simply mapped to the appropriate 33�  region on the 

99�  filter. The sum of the �
ijDxx  and �

ijDyy  operator 
masks is computed, resulting in a Laplacian operator, and 
these values are appropriately mapped to each of the 

99�  filter regions. The interest point blob strength is 
then represented by convolution of this Laplacian filter 
with the intensity values for the filter regions,  normal-
ised to take account of the size of the filter used, i.e. in this 
case, 99� . This normalised response indicates the blob 
response at that particular spatial location with the abso-
lute Laplacian value indicating the blob strength and with 
the local neighbourhood maxima representing the blob 
centre or interest point location. 

Similarly, blob responses are computed over further 
scales by increasing the overall size of the filter, but 
maintaining the 9 regions. For example, within the first 
octave filter sizes of  99� , 1515� , 2121� , and  

2727 �  are used, and each of these filters has 9 indi-
vidual regions of size 33� , 55� , 77 � , and 99�  
respectively. The blob response is computed over a total 
of 4 octaves that each contains 4 scale ranges. Blob re-
sponses that are not maxima or minima in the immediate 
neighbourhood of the selected blob are rejected by ex-
amining a 333 ��  neighbourhood (two spatial 
dimensions and a scale dimension) around the selected 
blob. Due to the large filters used to compute the blob 
locations any remaining blobs that are above a threshold 
are interpolated in 3D to accurately identify the exact blob 
spatial location.  
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3. Experimental Results 

Evaluation of FELF was performed using the set of test 
images and testing software provided from the collabora-
tive work between Katholieke Universiteit Leuven, Inria 
Rhone-Alpes, Visual Geometry Group and the Center for 
Machine Perception and available for download [9]. In 
the evaluation, the detectors used for comparison with 
FELF are limited to those that are most similar in terms of 
operation. A full evaluation, using the same software and 
images, of the different detectors used here for compari-
son has been carried out in [5], and the reader is referred 
to this work for full details. 

Two important parameters characterise the perform-
ance of a feature detector, the average number of 
corresponding features detected in images under different 
geometric and photometric transformations, both in ab-
solute (corresponding features) and relative terms (feature 
repeatability i.e. percentage-wise), and the accuracy and 
localisation of those detected features. The repeatability 
metric, first introduced in [3], explicitly compares the 
geometrical stability of detected interest points between 
different images of a scene under different viewing con-
ditions. The test image set consists of real structured and 
textured images of various scenes, with different geo-
metric and photometric transformations such as viewpoint 
change, image blur, illumination change, scale, rotation 
and image compression. We have performed comparative 
evaluation with the SURF detector and Harris-Laplace 
detector using the complete image dataset with different 
geometric and photometric transformations (for example 
see Figure 2, or [5] for full details).  

For the detectors presented here we describe a circular 
region with a diameter that is 3× the detected scale of the 
interest point, similar to the approach in [3, 5]. The 
overlap of the circular regions corresponding to an inter-
est point pair in a set of images is measured based on the 
ratio of intersection and union of the circular regions. 
Thus, where the error in pixel location is less than 1.5 
pixels, and the overlap error is below 60%, similar to the 
evaluation of the SURF detector [6], the interest points are 
deemed to correspond. For more information on how the 
detected regions are measured the reader is referred to [7]. 

    
         (a)                     (b) 
Figure 2.Example scale and rotation change sequence 

In Figure 3(a) and 3(b) we present comparative evaluation 
of the detectors on the textured viewpoint change scene. 
The FELF detector shows improved repeatability over the 
other detectors and shows a similar number of corre-
sponding regions to the SURF detector. Evaluation with 
the blur change on a structured scene is presented in 
Figure 3(c) and Figure 3(d) where the FELF detector 
performs best in terms of corresponding regions although 
not as well in the repeatability measure. In Figure 3(e) and 
Figure 3(f) the repeatability and number of corresponding 

regions are compared for the illumination change se-
quence, where the FELF detector performs best in the 
number of corresponding regions and shows similar per-
formance for the repeatability score. Finally, Figure 3(g) 
and Figure 3(h) show the repeatability and number of 
corresponding regions for the illumination change scene; 
again FELF performs similarly to SURF for repeatability 

4. Computational Comparison 

We have compared the times to process a single image 
( 640800 � pixels) using the Harris-Laplace, SURF, and 
FELF detectors. In the case of Harris-Laplace the detector 
used is the authors’ own implementation. In the case of 
the SURF detector the version used is that supplied in the 
OpenCV library [10]. In the case of the FELF detector the 
results are computed using optimised code.  The com-
putation times are presented in Table 1, with the times 
computed by averaging 5 runs of each detector on an Intel 
Core 2 Duo 3.00GHz CPU with 2Gb RAM.  

 

Table 1. Computation times 

Method Time (s) FPS 
Hessian-Laplace 0.871 1.148 
SURF (inc SURF-E descriptors) 0.636 1.572 
FELF (inc SURF-E descriptors) 0.541 1.848  

5. Conclusions and Future Work 

The results indicate that the FELF detector has improved 
performance in terms of computation time and is gener-
ally similar to SURF in repeatability.. In some sequences 
such as the structured blur change the SURF detector 
performs better than the FELF detector in terms of the 
repeatability measure. This is likely to be due to the fact 
that the SURF detector uses three derivative approxima-
tions rather than the one derivative approximation used in 
the FELF detector.  
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(a) Repeatability for viewpoint change (textured) 

 

 
(b) Correspondences for viewpoint change (textured) 

 
(c) Repeatability for blur change (structured) 

 

 
(d) Correspondences for blur change (structured) 

 
(e) Repeatability for illumination change 

 

 
(f) Correspondences for illumination change 

 
(g) Repeatability for scale change 

 

 
(h) Correspondences for scale change 

Figure 3. Repeatability score and number of corresponding regions for Wall sequence (a) & (b),  
Bikes sequence (c) & (d), Leuven sequence (e) & (f), and Bark sequence (g) & (h). 
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