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Abstract

In this paper, we propose a 3D shape similarity mea-
surement method using the surface skeleton of a voz-
elized 3D shape. A set of features are extracted from
the skeleton by combining the skeleton and the distance
map of the subject. The distribution of these extracted
features is used to represent the 3D shape. Two 3D
shapes can be compared with a similarity score com-
puted from the distance between their respective fea-
tures distribution. Our method is robust to noise and
to partial occlusion. Moreover, it is scale and rotation
ivariant. We tested and validated our method with
various objects with different shape and topology.

1 Introduction

Content based 3D object retrieval is an important
research topic in computer vision and for multimedia
community. It results from the improvement of the 3D
objects scanning techniques in real scenes. 3D object
retrieval has many applications such as computer-aided
design, molecular modeling, video games, etc. As a re-
sult, numerous 3D objects are accumulated in many
databases and it is necessary to use specific methods
to retrieve them efficiently. Naturally, these retrieval
methods should represent the objects accurately and
concisely to compare them efficiently and quickly, in-
dependently to any rigid transformation between the
compared objects or to noise due to the scanning er-
rors.

In this paper, we present a new retrieval method
for 3D shapes represented by voxels, based on the dis-
tribution of the features extracted from their surface
skeleton. Figure 1 summarizes our retrieval method.
We first extract a surface skeleton from an input 3D
volumetric object. This surface skeleton is robust to
noise and to rigid transformations. We use the geo-
metric relations between the skeleton elements to gen-
erate a 2D histogram. This histogram is a compact
representation of the considered object. We propose
a similarity measure to compare two histograms and
express the similarity between the two objects.

This paper is organized as follows: we first introduce
the related work about skeleton based retrieval meth-
ods and distribution based methods in Sec. 2. Then,
Sec. 3 details the skeleton feature distribution used for
the object representation. Sec. 4 presents the simi-
larity measure between histograms. Finally, we show
some experimental results in Sec. 5, demonstrating the
robustness of our method in regard to rigid transfor-
mations, noise and missing parts in objects.
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Figure 1. Overview of our retrieval method.
First, a surface skeleton is computed from the
input objects. Second, a skeleton feature distri-
bution histogram is extracted from the 2D skele-
tons. Finally, a similarity is measured between
the two histograms.

2 Related works

Skeleton is a powerful shape descriptor defined by
Blum [1] in 1962, based on a “ grass fire” analogy.
Imagine a shape as a field covered by dry grass, if you
set on fire the contour of the field, then the meeting
points of the flame fronts would constitute the skele-
ton of the shape. In the continuous framework, this
definition is equivalent to saying that the skeleton is
the set of points which are centers of maximal balls,
i.e. balls included in the object and not strictly in-
cluded in any other such ball. In 3D, we can define
two kind of skeletons: curvilinear skeleton and surface
skeleton (see Fig. 2 for some illustrations). In this pa-
per, we only consider skeleton based methods for shape
retrieval.

Numerous methods based on skeleton have been pro-
posed in order to measure the similarity between 2D
shapes. The most famous is probably the shock graph
approach, proposed by Siddigi and Kimia [2]. It con-
sists in the representation by a graph of the variations
of maximal ball radius along the skeleton branches and
in the matching of such graphs. This method has been
improved by Torsello and Hancock [3], by taking into
consideration the importance of each branch of the
skeleton for the representation of the shape.

Di Ruberto proposed in [4] a direct graph represen-
tation of the skeleton, by representing all intersections
and ending points by vertices and all the branches by
edges. The similarity measure between the original
shapes is obtained by measuring the distance between
the graphs.

Some other methods use the skeleton without graph
representation: a method proposed by Goh [5] consists



Figure 2. Illustration of the different skeletons.
From the left to the right: a curvilinear skeleton
of a 2D shape, a curvilinear skeleton and a surface
skeleton of a 3D shape.

in segmenting the skeleton in elementary parts that
are matched together. Bai and Latecki [6] present a
similarity measure based on the skeleton paths, i.e. the
curves belonging to the skeleton and linking two ending
points.

However, all the methods mentioned above are not
compatible with 3D shapes because they require a
curvilinear skeleton. In 3D, a curvilinear skeleton does
not represent efficiently all the geometry of the shape,
contrary to a surface skeleton. Sundar et al. [7] pro-
posed an approach based on the 3D shapes curvilinear
skeleton. This method is very efficient for articulated
and tubular shaped objects but does not take into con-
sideration the whole geometry of the object.

For our best knowledge, there is no method using
surface skeleton information for 3D shape similarity
measurement.

Osada et al. [8] defined in 2002 a new approach to the
problem of similarity measure between shapes: instead
of comparing the features of the shape, the authors
proposed to compare the distribution of these features
by counting the number of occurrences of each feature.
Then the comparison is performed by measuring the
similarity between these distributions.

In this paper, we apply this approach to compare
the surface skeletons of two shapes by considering the
distribution of their features.

3 Skeleton Features Distribution

In this section, we describe how to compute the
skeleton features distribution of an object O C Z3.
A skeleton feature represents the geometric relation-
ships between pair of voxels included in the surface
skeleton. Once all skeleton features are obtained from
every pair of voxels, we represent their distribution in
a two dimensional histogram. We call this histogram
a skeleton features distribution.

3.1 Surface Skeleton Computation

The surface skeleton is obtained using the 6-
directional thinning algorithm constrained by 2D-
isthmuses (denoted D6I2D) defined by Raynal and
Couprie in [9]. This algorithm is interesting in our
case for three reasons:

e the resulting surface skeleton preserves only the
main features of the object and a reconstruction
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from this skeleton will remove the small perturba-
tions of the object.

e the resulting surface skeleton contains a very low
amount of spurious branches, i.e. parts of the
skeleton useful for the reconstruction and which
are often very sensitive to rotations.

e the algorithm is very fast and hence perform a fast
computation of the descriptors.

The main problem resulting of a surface skeleton is
its size: if the original object is too small, the skele-
ton can be inaccurate. On the other hand, if the ob-
ject is too big, the number of voxels contained in the
skeleton can be very large, resulting in a time con-
suming features computation. In order to solve these
problems, the considered objects are resized before the
thinning, such its maximal dimension is equals to a
fixed value N.

We denote by S(O) the surface skeleton obtained
from the resized version of the object O.

3.2 Skeleton Feature

After generating the surface skeleton of the object,
we compute the skeleton features represented by the
geometric relationship between skeleton voxel pairs.
From any pair of voxels (p,q) € S(O) x S(O) we can
obtain three distances:

e the Euclidian distance between p and ¢, denoted
by dp.q

e the radius of the maximal balls for the voxel p and
the voxel ¢, denoted 7, and r, respectively.

Figure 3 illustrates these distances. By definition,
these distances are scale dependent. However, if we
consider a ratio of two of them, we obtain a scale in-
variant measure. Thus, we can represent these three
distances by a couple of scale invariant values:

"p

.
SF(p,q) = (—d r—p)
P,q q

Notice that any other ratio of the three distances
d(p,q), rp and r4 can be obtained from the two ratios
considered in Eq. 1. Moreover, the constraints d, 4 > 0
and r4 > 0 are always satified since d, 4 is measured
between different voxels and 7, is measured from p to
a voxel out of the object.

(1)

3.3 Skeleton Features Distribution

The previous section presents how to compute a fea-
ture from a 3D shape and its skeleton. This technique
is applied on all the voxel pairs belonging to the skele-
ton, resulting in the set of all the possible features of
the object surface skeleton S(O). This set of skeleton
feature is denoted by SF(O). Let |S(O)| be the num-
ber of voxels in S(O), the number of features in SF(O)
is [SF(O)| = |S(0)]?. Usually, an efficient skeleton
contains at least five thousands voxels, hence the num-
ber of features is too high for being used directly.

Instead of directly using the features, we propose
to use their distribution. This distribution is a bi-
dimensional histogram, since each feature is a couple



Figure 3. A 2D example of geometric distances
for a skeleton feature. The gray area denotes the
region of the object. The dash line represents
the skeleton. The three measures d, r, and 74
related to the two points p and ¢ are used for the
computation of the feature.

of values. Notice that the two values of the features
are ratios, resulting in a dense distribution between 0
and 1 and more and more sparse for high values. In
order to obtain an efficient representation of the distri-
bution, we use a logarithmic scale for the histogram,
resulting in numerous bins between 0 and 1 and only
few bins for largest values.

In addition, as the number of voxels in a skeleton
is different for each object, the histogram is normal-
ized such that its integral is equal to 1. We call this
normalized histogram the skeleton features distribution
(SFD) and we denote it by SFD(O). Some examples
of SFD are shown in Fig. 4.

4 Similarity measure

In order to compare two objects, we propose to use
a similarity measure between their skeleton features
distributions. All the SFD have the same dimensions
W x H. For a given SFD A, the value of the bin at
coordinates (7, 7) is denoted by A; ;. The sum of all
bins values of A is denoted by |A].

Let A and B be two SFD, we consider the union of
A and B, denoted by (AU B), such for any (i, j) € N2,
1< W,j< H:

(AU B)i; = max(Ai;, Bi;) (2)

In the same way, the intersection of A and B, denoted
by (AN B), is defined such for any (4, 5):
(AN B)i; =min(A;;, Bi;) (3)

Using Eq. 2 and Eq. 3, we can now define our similarity
measure, denoted by Sim(A, B), by:

: (AN B)|
Sim(A,B)=1— +——== (4)

(AU B)|
This similarity measure ranges between 0 and 1. If

A and B are very similar, their intersection will be
very similar to their union, resulting in a similarity
measure close to 0. If A and B are very different, their
intersection will have very small values in comparison
to their union, resulting in a similarity measure close
to 1.
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Figure 4. Examples of surface skeletons and skele-
ton features distribution for different objects.
The object is represented by semi transparent
voxels, the surface skeleton is represented by red
voxels and the skeleton features distribution is
represented by the color image bellow the object.

5 Experimental results

All the experimental results have been done on a
computer with a 2.33GHz Quad Core CPU and 3 Gi-
gabytes of RAM. The average computation time of a
SFD is around 5 seconds and the comparison of a SFD
with those of the full database (187 SFD) is done in
less than 50 milliseconds.

In order to highlight the good properties of our
method, we propose the results obtained for a data
base designed for this purpose. Our database is gen-
erated from eleven very different objects. For each ob-
ject, we generate a set of 16 variations:

rotation: rotations of the object (15 and 45 degrees)
around each axis — 6 new variations.

scale: rescaling of the object with factor 0.5 and 2
— 2 new variations.

noise: addition of new surface voxels (10, 100, and
1000 new voxels) — 3 new variations.

partial: removal of parts of the object (more than 5
percents of the volume, see Fig. 6 for some exam-
ples) — 5 new variations.

By this way, we obtain a set of 187 objects consisting
in 17 variations of 11 objects.

In the following, the results are expressed us-
ing similarity matrices: each row and each col-
umn of the matrix corresponds to one object of the
data base. In this visualization of the matrix, the
lightness of each element (i,5) is proportional to
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Figure 5. Similarity matrix (187 x 187) of all the
variations of the data set.
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Figure 6. Examples of variations obtained by
parts removal.

Sim(SFD(0;),SFD(0;)). Darker elements represent
better matches whereas lighter elements indicate worse
matches. The objects are always sorted in the same or-
der: all the variations are consecutive, starting by the
original object, then all its variations in the order of
the above description. The similarity matrix of all the
data base is shown in Fig. 5.

In order to improve the visibility of the results, we
propose to represent only the 17 best matchings for
each column, thus the 17 most similar results for each
object. In Fig. 7, an element (¢, j) is black if and only
if the object ¢ is one of the 17 most similar to the ob-
ject j in our data set. The red squares represent the
zones where elements correspond to the similarity be-
tween variations of a same object. By this way, we can
observe that there is few bad retrievals (black elements
out of a red square), especially in the case of original
objects, where the average percent of bad retrievals is
less than 3.3%.

6 Conclusion

In this paper, we propose a new similarity measure
between shapes based on skeleton features distribution.
Our method is robust to rigid transformations, noise,
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Figure 7. Similarity matrix thresholded in order
to keep only the 17 bests results for each column.
Red squares represent zones where variations of
a same object are compared.

and partial occlusion. In future works, we will try to
adapt such approach for a local matching of the differ-
ent parts of the shape.

References

[1] H. Blum. An associative machine for dealing with the
visual field and some of its biological implications. In
E.E. Bernard and M.R. Kare, editors, Biological Pro-
totypes and Synthetic Systems, volume 1, pages 244—
260, NY, 1962. Plenum Press.

K. Siddigi and B.B. Kimia. A shock grammar for
recognition. In 1996 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
1996. Proceedings CVPR’96, pages 507513, 1996.

A. Torsello and E.R. Hancock. A skeletal measure
of 2D shape similarity. Computer Vision and Image
Understanding, 95(1):1-29, 2004.

C. Di Ruberto. Recognition of shapes by attributed
skeletal graphs. Pattern Recognition, 37(1):21-31, 2004.
W.B. Goh. Strategies for shape matching using skele-
tons. Computer Vision and Image Understanding, 110
(3):326-345, 2008.

X. Bai and L.J. Latecki. Path similarity skeleton graph
matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(7):1282-1292, 2008.

H. Sundar, D. Silver, N. Gagvani, and S. Dickenson.
Skeleton based shape matching and retrieval. SMI
2003, 130139, 2003.

R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin.
Shape distributions. ACM Transactions on Graphics
(TOG), 21(4):807-832, 2002.

B. Raynal and M. Couprie. Isthmus-Based 6-Directional
Parallel Thinning Algorithms. International Confer-

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

ence on Discrete Geometry for Computer Imagery (DGCI),

to appear.



