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Abstract

This paper proposes a method for reconstructing a
3D surface landscape from an aerial image sequence
captured by a single noncalibrated camera. Recon-
structing a 3D surface landscape is more difficult than
constructing a landscape of buildings or objects in a
room because of the lack of available information about
camera parameters, the need for mosaicking of 3D sur-
face elements, and the introduction of nonrigid objects.
Therefore, conventional methods are not directly appli-
cable. In order to solve these problems, we apply so-
called 2-Dimensional Continuous Dynamic Program-
ming (2DCDP) to obtain full pixel trajectories between
successive image frames in a sequence of aerial im-
ages. Then we apply Tomasi–Kanade Factorization to
the full pixel trajectories to reconstruct the 3D surface.
We also develop a mosaicking technique for connect-
ing all of the partially reconstructed surfaces. The ex-
perimental results show that our proposed method is
very promising for reconstructing 3D surfaces, includ-
ing a forest, a mountain, a lake and several houses. We
conduct experiments to compare our method against a
SIFT-based method using two sets of data, namely, ar-
tificial and real image sequence data.

1 Introduction

In computer vision, many image-based 3D model-
ing methods have been developed, such as the stereo
method [3], shape from shading [5], photometric stereo
[13], the baseline matching method using epipolar
geometry [9], Tomasi–Kanade Factorization methods
[12], and shape from silhouettes [2]. Most of these
methods achieve their goals under specific conditions
and require extra input information, such as internal
and external camera parameters or light source po-
sition (see Table 1). All of them, except the Fac-
torization method, need precise camera parameters,
which are contained in a fundamental matrix. Nor-
mally, the fundamental matrix can be extracted from
several calibrated images [15]. An effective approach,
quasi-dense baseline matching, developed by J. Kan-
nala and S.S. Brandt [7], uses the fundamental ma-
trix and seeds provided by the SIFT or KLT tracker
to obtain more matching points for 3D object recon-
struction. However, materials such as movies or pho-
tos taken by ordinary people are difficult to calibrate.
Another approach, the Factorization method, does not
require the fundamental matrix or calibrated images to
reconstruct 3D objects, so it is still a practical method
for this situation.
SIFT [8] and KLT [11] are used as pixel matching tech-
niques in the Factorization method. They require a
small angular variation in sequences of input images,

and can obtain only a small number of matching pixels.
For this reason, Factorization needs to use numerous
input images to increase the quantity of matching pix-
els.
Meanwhile, landscape reconstruction from aerial image
sequences is one of the most important applications of
3D reconstruction in computer vision. The researches
of 3d reconstruction are using epipolar geometry [1],
LIDAR data [10], and laser scan data from ground [4].

However, most of this research is for urban area re-
construction. Reconstruction for forestland is more
difficult than that of urban areas because of the plain
textures and elusive matching points. Moreover, and
as mentioned previously, internal and external camera
parameters are needed for accurate reconstruction.
In this paper, we propose a 3D reconstruction sys-
tem, which is applicable for nonartificial landscapes,
by using the 2DCDP [14] algorithm. 2DCDP was
introduced by Yaguchi, Iseki, and Oka in 2008 [14].
This method maintains 2D pixel correlation and as-
sures continuity and monotonicity in the input image,
therefore giving numerous matching points. Addition-
ally, 2DCDP uses the whole reference image for im-
age registration. Thus, we can obtain proper match-
ing points even if there are areas in which the texture
is plain. This fact is an advantage over Factorization,
which requires many reliable matching points to calcu-
late an object’s shape.
Section 2 presents an overview of this system, and de-
tails of the 2DCDP algorithm, Factorization method,
and merging for 3D points. Section 3 shows the exper-
imental results for artificial data and real forestland
image sequences. Finally, our conclusion is included in
Section 4.

2 System Overview

In this section, we propose a method that obtains a
3D landscape surface from an aerial image sequence.
Matching points are obtained by using 2DCDP, and
then a 3D coordinate of matching points is calculated
by using the Factorization method. This method re-
quires three or more images taken from distinct posi-
tions. To satisfy this condition, first, we select a frame,
Fi, from the image sequence, and set a region of inter-
est (ROI). From this, we call Fi a reference frame of
an object. Next, we select two or more frames that
completely contain the ROI of Fi. These frames can
be considered as the images that are taken from dis-
tinct positions of the ROI. We can obtain correspond-
ing points of the ROI within selected images by using
2DCDP [14], with the ROI as reference and Fi and
the other frames as input. After that, a 3D surface
of the ROI is reconstructed by using the Factorization
method [12, 6]. Finally, 3D surfaces, which are ob-
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Table 1. 3D reconstruction methods summary: ‘x’ indicates (a) Camera parameter, (b) Fixed camera position,
(c) Fixed light position, (d) Camera distance, (e) Nonpeculiarity scale matrix, (f) Corresponding points, (g)
Minimum number of required images

Method Characteristic (a) (b) (c) (d) (e) (f) (g) Note
Stereo method Parallax + Triangular surveying x x x 2 Principle of human eye

Shape from shading Reflection coefficient map x x x x 1 Smooth object

Photometric stereo Reflection coefficient difference x x x 3 Lambertian surface model

Baseline matching E/F Matrix + Camera motion x x 2 Weak matching noise

Factorization method Pixel correspondence + Motion

separation

x x 3 Affine camera model

Shape from silhouettes Back projection + Voting x x x 4+ Convex object only

Figure 1. The processing flow of the system

tained by applying the previous steps on each Fi, are
mosaicked using the RANSAC method (Section 2.1).
Figure 1 illustrates the processing flow of the system.

2.1 Mosaicking for 3D Surfaces

In this section, we show a method of stitching to-
gether two reconstructed 3D surfaces. First, we ob-
tain corresponding points between reconstructed 3D
surfaces. Let FA, FB be reference images of objects
A and B, respectively. Corresponding points between
A and B are obtained by 2DCDP after putting FA

into input frames of B, and FB into input frames of
A. After that, we calculate the Affine matrix that
minimizes the sum of the error between correspond-
ing points with the RANSAC method. Let CA =
{Ax1, · · · ,AxN}, CB = {Bx1, · · · ,BxN}, where N is
the number of corresponding points between A and B,
and xi = (xi yi zi)

T . We choose three integers k, l,m
randomly (1 ≤ k, l,m ≤ N , k �= l �= m), and calculate
the following equations:

(Axk Axl Axm) = M(Bxk Bxl Bxm), (1)

where M = (mij) is a 3 × 3 matrix.
And, we define the affine matrix M ′ as follows:

M ′ =

⎛
⎜⎝
m11 m12 0 m13

m21 m22 0 m23

0 0 ±1 ZA ∓ ZB

m31 m32 0 m33

⎞
⎟⎠ , (2)

ZA = (Azk + Azl + Azm)/3, (3)
ZB = (Bzk + Bzl + Bzm)/3, (4)

cameracamera

ground truth

projection area

rendering result image

ground truth texture

direction

Figure 2. The landscape, camera position, and
texture of artificial data.

where M ′ represents the rotation and skew of the
x and y coordinates, and translation of x, y and z.
Practically, it is always true that m31 = m32 = 0, and
m33 = 1.
Then we transform CB by M ′:

(
Bx

′
1 · · · Bx

′
N

1 · · · 1

)
= M ′

(
Bx1 · · · BxN

1 · · · 1

)
. (5)

Finally, we calculate the error between CA and the
transformed CB :

D =

N∑
k=1

d(Axk,Bx
′
k), (6)

where d(x, y) =
√
x2 + y2. The process of choosing

k, l,m in Equation (1) is repeated a predefined number
of times, and the M ′ that minimizes D is selected as
the Affine matrix to join B into A.
In this process, we allow the rotation in the x and y
directions only because the error grows rapidly with
each join if we permit the rotation in the z direction.
Moreover, M ′ is based on the assumpotion that cam-
era direction is perpendicular to 3D surface. Note that
±1, ZA ∓ ZB in M ′ are enantiomorphs of the Factor-
ization method.

3 Experiments

3.1 Conditions

This section describes the experimental data prepa-
ration and results for two sets of aerial image sequences
that are generated by CG, and taken by general video
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Table 2. Experimental conditions of artificial and
real image sequence data.

Original video size 1280 × 720
2DCDP Video size 320 × 240

ROI size 240 × 120
SIFT Video size 1280 × 720

ROI size 960 × 480
The number of input images 7

The position of reference frame 4
Iteration times 1000

camera. A comparison between the proposed system
and a system that adopts SIFT [8] as its matching
method is also performed in this section. Table 2 de-
scribes experimental conditions of artificial and real
image sequence data. Note that, SIFT has an advan-
tage over 2DCDP at video and ROI size. Figure 2
shows the landscape, camera position, and texture of
CG data. In the real landscape, the distance between
two images is 10 frames.

3.2 Results

Figure 3 (a) shows reconstructed objects by using
SIFT and 2DCDP, used images, and 2DCDP match-
ing results. The result of 2DCDP + Factorization has
more points, and the surfaces of regional points are
smoother than SIFT. It would appear that SIFT is
a feature-point-based method, so each corresponding
point is independent. On the other hand, 2DCDP is
a pixel-based method, therefore each point has the re-
lationship. Figure 3 (b),(c) describe the combination
of the objects of the artificial and real landscapes. Its
error rate is similar to the single object error rate, de-
spite restricting the Affine matrix to Equation (2).

3.3 Evaluations

In this section, we define evaluation functions and
compare results of 2DCDP + Factorization with those
of SIFT + Factorization in artificial data, as shown in
Figure 3 (a). Two evaluation functions are described
as follows:

D =

∑N
i=1(zi − ẑi)

2∑N
i=1 ẑ

2
i

, V =
1

k

∑
k

Var(Zk)

Var(Ẑk)
, (7)

where zi, ẑi represent the z coordinate of the i-th corre-
sponding point of the reconstructed and ground truth
landscapes, and Zk is a subset of zi. In this experi-
ment, we divided a land surface into 100 local areas
(equal segregation in both the x and y directions) as
Zk. The undulation of each local area is indicated by
Var(Zk). The 3D surface is close to ground truth when
V is nearly one. The 3D surface made by SIFT +
Factorization is like a pinholder, therefore V becomes
far removed from one (see Table 3). We cannot cal-
culate the result of 2DCDP+factorization under ROI
size 960 ×480 because the computational complexity of
2DCDP is O(n4). If we have sufficient memory size for
calculation, we will obtain 960× 480 = 460800 points.

4 Conclusion

This paper proposed a method for reconstructing the
3D surfaces of landscapes from aerial imagery using the

Table 3. The result of calculations of evaluation
functions.

2DCDP SIFT SIFT
ROI size 240 × 120 240 × 120 960 × 480

The number of points 28800 44 17122
D 0.002275 0.263603 0.025563
V 0.9861 - 1.90575

2DCDP and Factorization methods, which needs only
aerial imagery shot by a single noncalibrated camera,
and requires no intrinsic or extrinsic camera parame-
ters. The affine matrix for joining objects is restricted.
However, we show that the increase in error is low if
input video data have sufficient texture information,
and we can obtain corresponding points that have less
matching error. In our method, we hypothesized an
orthographic projection that is a zero-order approxi-
mation of a perspective projection in the Factorization
method. We need to compare our results with a weak
perspective projection and a paraperspective projec-
tion.
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(a) Reconstruction using artificial image sequence (single object)

Low High

(320x240)

Reference
(240x120)

Ground truth

Reconstruct & Combined

Reconstruct & Combined

Mosaicked image of aerial image sequence

3D Plot Contour Plot

Contour Plot

3D Plot

Low High

(b) Reconstruction using artificial image sequence (combined)

(c) Reconstruction using real video (combined)

Figure 3. The results of reconstruction of 3D land surface. Figure (a) is the result of a single object using
the artificial landscape of 2DCDP + Factorization and SIFT + Factorization. The left images of (a) are
inputs to 2DCDP and its matching results. (b) and (c) shows the results of combining objects using artificial
and real landscape image sequences. The right image of (c) is combined real images, and made by manual
translation and rotation. Note that this manual handling has incompleteness because the Affine matrix (2)
includes a skew transform for the x and y coordinates
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