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Abstract—This paper presents an efficient vision algorithm to
recover the pose of an indoor unmanned aerial vehicle with
respect to a structured scene based on vanishing geometry.
Specifically, the ground plane vanishing line and a vanishing
point are calculated from a set of equally-spaced parallel lines.
By using such geometries, an elegant closed-form expression is
derived to compute the rotation matrix of the camera. This
rotation matrix is then used in a constrained estimation of the
camera location. Moreover, a fast line detection algorithm is
proposed where one dimensional edge detections are performed to
a sampled subset of image pixels. Since only minimal features are
utilized, complex algorithms such as RANSAC and Levenberg-
Marquadt optimization remain computationally feasible in real
time. The whole processing can reach an average of 25.6 frames
per second on an embedded computer: Gumstix. Lastly, The
proposed algorithms are successfully verified in simulations and
fly tests conducted under several conditions.

Index Terms—vanishing line, vanishing point, UAV indoor
navigation, track following, pose estimation, real-time system

I. INTRODUCTION
The unavailability of satellite signal in indoor context has

forced autonomous robots, such as unmanned aerial vehicles
(UAVs), to seek other forms of localization methods. Due to
the low cost and flexibly programmable nature of cameras,
vision-based localization has become a popular choice for
researchers and engineers. To perform the same function as
GPS, frames captured by a camera must be processed in a
way such that the location and orientation of the camera can be
extracted. This is often characterized as the camera calibration
problem for extrinsic parameters.
To solve such a problem, the geometry of vanishing point

plays an important role. Wang and Tsai transformed vanishing
line directly to roll angles in [12], but extra information
was required to uniquely determine yaw and pitch. Vanishing
points were also used for pose estimation in [4], [8], [2], but
they required the points to be pointing at orthogonal directions.
In addition, a pose estimation using single vanishing point
normal to ground plane was proposed by Xu in [13]. Yet, it
recovers only pitch and roll.
Although aforementioned works identified the importance

of vanishing geometry, they failed to address the common
situation where only one vanishing point is available in the
image,e.g. road following. This is exactly the case in our
situation where the UAV is to fly autonomously according
to the colored track on the floor (illustrated in Figure 1).
Though in a sense, vision path following is considered as a
solved problem, the existing approaches do not require explicit
recovery of the camera pose [10], [7], [5]. The concept of
vanishing point was only used to provide heading feedback [5].
Even for the visual servoing of the UAV, near hovering
assumptions (zero pitch and roll angles) are being made, such
as in [11], [1], [6]. The near hovering assumption might be

Fig. 1. Micro aerial vehicle: “FeiLion” sitting on colored track.

reasonable for low-speed coaxial rotors with self-balancing
hardware, but is not valid for quad-rotor and conventional
helicopter.
This paper proposes an efficient algorithm to estimate UAV

pose as well as vertical and lateral displacement with respect
to the track in Figure 1. An elegant analytical expression
of rotation matrix using vanishing point and line is derived,
which reveals the underlying connections between pose and
vanishing geometry. The rotation matrix is further applied
in a constrained estimation of the camera’s external matrix,
in which the lateral and vertical displacement of the camera
relative to the track are found by solving a system of over-
determined linear equations. The measurements obtained will
provide essential information for accurate control of the UAV
and facilitate various autonomous tasks.
The organization of the paper is as follows. Section II

presents the image processing to efficiently extract the line
features on the track. Section III describes the pose estimation
approach for the UAV using the vanishing point and line.
Section IV shows the results and analysis of the simulation
and actual fly-tests. Finally, we draw conclusions and present
future work in Section V.

II. IMAGE PROCESSING AND FEATURE EXTRACTION

A. Line Extraction

The high complexity of Canny edge detection and Hough
Transform makes it unsuitable for onboard processing. In this
particular case where a track of colored bands is available,
much more efficient algorithms can be expected. Inspired by
the idea proposed in [6], we come up with a more reliable
algorithm. The steps are summarized below:
1) Binary search for the top-most horizontal pixel sequence
that contains [Green Red Blue] pattern;

2) Take samples evenly in the lower half of image;
3) Preprocess each sample, perform 1D edge detections and
then search for the segment groups that contain [Green
Red Blue] pattern;
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(a) Edge detection (b) RANSAC line fitting

Fig. 2. Illustration of line segmentation.

4) Rectify radial distortion;
5) Fit line using least square methods;
6) If the error is above a threshold, RANSAC is triggered.
The line is then fit again with outlier excluded.

There are several implications on efficiency within this new
algorithm. First of all, sampling the image downsizes the
image from 320 × 240 to 320 × k, where k is the number
of samples. This reduces the two-dimensional problem to a
multiple of one-dimensional ones. Secondly, the process of
undistortion can now be performed only to the points of
interest. Thirdly, RANSAC is less taxing with small k. It is
even feasible to try out all combinations. Lastly, compared to
Hough Transform, this method saves the trouble in filtering
and reordering of detected lines. In overall, this line detection
algorithm retains a complexity of O(n) when k is small and
is thus an ideal method in our application.

B. Finding the Vanishing Point and Vanishing Line

The next step is to calculate the vanishing point and
vanishing line from the lines we obtained.
In theory, parallel lines should intersect at one single van-

ishing point on image. However, due to the noisy real image,
this is often not the case. By the standard method in [3], we
calculate the least square solution and then refined it with
Levenberg-Marquadt algorithm.
According to [9], vanishing line can be expressed analyti-

cally with three coplanar equally-spaced parallel lines. With
four such lines on ground planes in our case, the problem can
be formulated into an over-determined system of linear equa-
tions. Nonetheless, such formulation is not explicitly disclosed
in that paper. Hence, our formulation will be presented here
as an example of applying Schaffalitzky’s findings [9].
A group of parallel lines can be expressed in standard form:

Lλ : ax + by + λ = 0
or its normal vector Lλ in matrix form:

Lλ =

[
0 a
0 b
1 0

] (
λ
1

)
(1)

which defines a projection from 1D projective space P 1 to 2D
projective space P 2. By the definition of projective space, this
relation is invariant to projective transformation (homography).
Note that when λ equals to consecutive integers, the line group
has equal spacing. Define M−T to be the line transformation
matrix between world plane and image plane. By multiplying
M−T on both side of (1), we obtain a projection matrix from
points in P 1 to images of Lλ.

A = M−T

[
0 a
0 b
1 0

]

(a) Detected vanishing point and line. (b) The coordinate systems.

Fig. 3. An illustration of processed image and coordinate system.

Also note that the first column of the projection matrix in (1)
is the vanishing line in P 2, then the first column of A is the
vanishing line in the image. Let A = [aT

1, aT
2, aT

3]T, and the
i-th image line is given by Li = [xi, yi, 1]T. Corresponding
i-th object point Xi = [i, 1]T. For each correspondence, the
two linear equations are:[

0 −XT
i yiX

T
i

XT
i 0 −xiX

T
i

] (
a1

a2

a3

)
= 0 (2)

A total of four equally-spaced lines give 8 independent equa-
tions, which is more than enough to determine the matrix A
and hence the vanishing line. An illustration of the detected
vanishing line and vanishing point is shown in Fig. 3(a).

III. POSE ESTIMATION AND CONSTRAINED
LOCALIZATION

Without losing any generality, we choose the world coordi-
nate frame with respect to the track. Specifically, the forward
middle line of the track is x direction and the orthogonal
direction to the left is y direction. By convention this is a
right-hand coordinate, thus z-axis points vertically upwards
(see Fig. 3(b)). The estimated camera pose and location in the
following parts will be in term of this frame.

A. Pose Estimation

Given the vanishing point on image X∞ = [x, y, 1]T, we
have

X∞ ∝ K[R|t]

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ = K[r1 r2 r3 t]

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

where R = [r1 r2 r3]. Hence, we obtain

r1 =
K−1X∞

||K−1X∞||
Let the ground plane vanishing line L∞ = [p, q, 1]T. Since
all points on ground plane has a form x = [x, y, 0, w]T, the
projection matrix reduces to a homography: H = K[r1 r2 t].
Thus the transformation equation is:

L∞ ∝ H−Tl∞ = H−T

(
0
0
1

)

Inverting the homography to another side and expand the term,
we obtain (

rT
1

rT
2

tT

)
KTL∞ ∝

(
0
0
1

)
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The first two equations imply that the vector KTL∞ is
orthogonal to both r1 and r2. This is exactly the characteristic
of r3. Thus, up to direction ambiguity, we have derived:

r3 = ± KTL∞
||KTL∞||

The other vector r2 is simply r3×r1 by right hand rule. Taking
into consideration the physical meaning of r3: the unit vector
in z direction of the world frame represented in camera frame,
we can easily resolve the ambiguity by looking at camera’s
principal ray direction.
To sum up the derivation, rotation matrix can be expressed

elegantly with one vanishing point and vanishing line:

R =
[

K−1X∞
||K−1X∞|| ± (KTL∞) × (K−1X∞)

||KTL∞||K−1X∞|| ± KTL∞
||KTL∞||

]
B. Constrained Localization
We should notice that no information is given along the

track’s longitudinal direction, thus it is infeasible to recover
x coordinate of camera center from the images. As a result,
a shifting world coordinate system is adopted such that x is
always zero.
Based on this assumption and the rotation matrix in Part A,

the task of self-localization reduces to a constrained estimation
of only two values, i.e., the lateral displacement and height.
Given metric information of the track, the solution can be
obtained using correspondences. Let the camera center C̃ =
[0, y, z]T, we have

t = −RC̃ = −yr2 − zr3 (3)
Also let li be Line i in on ground plane and let Li be the
image of li in image plane. Since the lines are all parallel
to x direction, we have a reduced form of li = [0, 1, wi]T.
Then the homography between ground plane and image plane
relating the line correspondences can be written as:

li ∝
(

rT
1

rT
2−yrT

2 − zrT
3

)
KTLi

By the direct linear transform formulation:[
0 −wi(KTLi)T (KTLi)T

wi(KTLi)T 0 0

] (
r1

r2

−yr2 − zr3

)
= 0

Apparently, only the first equation is relevant, so for each i,
we have:

[(KTLi)Tr2 (KTLi)Tr3]
(

y
z

)
= −wi(KTLi)Tr2

Piling up the equations and applying singular value decompo-
sition (SVD), the least square solution of y and z is obtained.
Note that there is only one useful equation from each line
correspondence and only two line correspondences are linearly
independent. Thus, we have just enough equations for the two
unknowns.
Likewise, counting the overall number of equations used and

degree of freedom is interesting too. All in all, four linearly
independent equations coming from a pencil of lines and one
extra constraint of equal spacing add up to a total of five
independent constraints. Correspondingly, there are exactly
five degrees of freedom to be determined.
In a nutshell, by considering the geometric meaning of

vanishing features, this algorithm nicely by-passes the non-
linearity within the quadratic equations that define rotation
matrix, and hence makes the process of calibrating the cam-
era’s extrinsic parameters more efficient.

a. Ideal image b. Blurry and noisy image

Fig. 4. Illustration of simulation conditions

Fig. 5. Simulation Results.
Left: Ideal Image; Right: Blurry AND noisy image.

IV. EXPERIMENTS

In order to verify the integrity of the algorithm, a series of
simulation and fly-tests were carried out.

A. Simulation

1) Methodology: In the simulation, a virtual UAV flies
according to a predefined trajectory above the track. Video
frames generated by the virtual onboard camera are then fed
into the vision algorithm realized using OpenCV.
For comparison, two fly conditions are assumed: (a) ideally

stable quasi-static flight with normal lighting condition; (b)
UAV flight with vibration and high-ISO camera configuration
(simulated using blurring and Gaussian noise). A sample of
these images is given in Fig. 4.

2) Simulation Results: The results of both conditions are
shown in Fig. 5. As we may observe, the measurement (solid
blue line) follows the reference (dashed red line) closely. There
is no significant difference between ideal case and deteriorated
case. This implies that the algorithm is robust against harsh
conditions.

B. Fly Test

1) Platform: The fly test is conducted on a coaxial rotor-
craft named “FeiLion” [11], where a newly developed vision
system is installed. The onboard vision system consists of a
Logitech C500 webcam and an embedded computer Gumstix
Overo Fire (see Fig. 6). The algorithm is implemented on
Gumstix to measure the position and orientation of FeiLion in
real time.
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Fig. 6. Illustration of hardware.
Left: Logitech Webcam; Middle: Gumstix with expansion board; Right: FeiLion

Fig. 7. FlyTest Results. Left: Hand-hold Motion; Right: R/C Motion.

2) Methodology: Similar to simulation, two experiments
are conducted: (a) Hand-held UAV motion: for easy maneuver
of decoupled testing of different channels; (b) R/C UAV flight:
actual application scenario subjected to severe vibration and
noise. In both experiments, measurements are compared to the
IMU reading of yaw/pitch/roll angles.

3) Fly Test Results: The angle measurements of vision and
IMU are plotted in comparison in Fig. 7. In both experiments,
vision provides sensitive and drift-free yaw and pitch readings.
The performance is comparable to, if not better than that of
IMU. Roll angle, however, is noisier than the IMU readings
and exhibits fallacious behavior when the angle gets large. The
position measurements of the first experiment is also plotted
(see Fig. 8), motion on both directions during the experiment
are reflected as it is on the plot. The average frame rate in the
two experiments is 25.6 FPS. Such real-time performance is
sufficient for UAV’s indoor navigation.

V. CONCLUSION

In this paper, we provide critical insight into how hidden
geometric entities such as a vanishing line (horizon) in indoor
environment can provide useful information. Specifically, a

Fig. 8. Hand-held Motion Position Plot. Left: Deviation; Right: Height.

new pose estimation and self-locating algorithm for an indoor
UAV is proposed and discussed with great details. The algo-
rithm features an innovative linear-time line detection tech-
nique, an unconventional vanishing line estimation method,
a constrained localization formulation and the derivation of
the analytical expression of rotation matrix using geometry at
infinity. In addition, the vision measurements are verified in
simulation and fly-tests.
This work is not complete yet. In order to realize fully au-

tonomous actions, dynamic models and control schemes must
be implemented as well. Also, the vision measurement can be
further improved in several ways, for instance, by filtering of
the results. The temporal-spatial information between frames
might be useful too. Lastly, fusing vision measurements and
the pose angle readings from IMU will probably produce even
better measurements.
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