
Robust vSLAM for dynamic scenes

Jun SHIMAMURA, Masashi MORIMOTO, and Hideki KOIKE
NTT Cyber Space Laboratories, NTT Corporation

1-1 Hikari-no-oka Yokosuka Kanagawa 239-0847, Japan
{shimamura.jun, morimoto.masashi, k.hideki}@lab.ntt.co.jp

Abstract

This paper proposes a robust visual Simultaneous Lo-
calization and Mapping(vSLAM) method that consists
of two parts: (1)an initialization method for a 3D map
and camera poses, and (2)an outlier rejection method
for moving objects. We introduce weighted tentative
initial values of a camera pose and 3-D map to re-
duce the user operation load. We also distinguish out-
liers of feature points between moving objects and er-
rors to stably estimate camera poses in dynamic scenes.
To achieve this, we first construct an angle histogram
based on outlier flows at a current frame, then approx-
imate the obtained angle histogram using a mixture
of Gaussian functions. Finally, we estimate the pa-
rameters for Gaussian mixtures using the Expectation-
Maximization algorithm. Results are shown to illus-
trate the superior performance of the proposed method.

1 Introduction

Augmented reality (AR) systems incorporate virtual
information into actual environments to achieve en-
hanced functionality. One goal of AR is to overlay
virtual information on a camera image to provide the
end-user with additional knowledge about objects in
the scene.

The vision-based real-time camera tracking tech-
nique called ”visual Simultaneous Localization and
Mapping” (vSLAM) helps one to browse virtual infor-
mation without special equipment or prior information
(e.g., CAD models) about the environment[1, 2, 3, 4,
5]. Typically, the camera pose is estimated from frame-
to-frame feature points tracking over the short term,
along with the position of the 3-D map points recov-
ered using bundle adjustment. They usually run fast.
However, drifting and relocalization problems could be
produced when there are moving objects in an envi-
ronment, because they mostly have imposed some con-
straints on the scene to be tracked: it should be mostly
static, i.e. not dynamic.

In order to estimate camera poses in dynamic scenes
stably, we propose a new vSLAM method that first
distinguishes outliers between feature points upon the
moving objects and errors, then eliminates the mov-
ing objects’ 3-D points from the 3-D map. We also
propose a map and pose initialization method without
user operation that is necessary for determining initial
camera pose and scene 3-D structure.

This paper is structured as follows. In Section 2, we
describe a method of camera pose estimation vis-a-vis
dynamic scenes by tracking natural features. Then, we
demonstrate experimental results of camera pose esti-
mation from actual environment image sequences to
show the feasibility of the proposed method in Section
3. Finally, Section 4 summarizes the paper.

2 Robust vSLAM for dynamic scenes

2.1 Framework overview

Table 1 overviews the proposed method, which con-
sists of two modules, i.e., the tracking thread and map-
ping thread. The tracking thread is responsible for es-
timating the camera poses for each input frame in real-
time. The mapping thread is responsible for recovering
3-D points by triangulation and optimizing them. This
design is almost the same as that of Parallel Track-
ing and Mapping (PTAM) [4]. Our method modifies
map and camera pose initialization (Step 2.1), takes in
outlier segmentation that distinguish between moving
objects’ points and errors (Step 1.5), then eliminates
3-D points from a map corresponding to the moving
objects’ points (Step 1.6).

Table 1. Framework overview

1. Tracking thread
1.1 Estimate a tentative current camera pose

by using motion model.
1.2 Project 3-D map points into current frame.
1.3 Search matching features nearby the

projected point.
1.4 Estimate a camera pose and detect outliers

with the matched features by using robust
estimator.

1.5 Segment outliers into moving object points
and errors.

1.6 Eliminate moving object points from 3-D map.
2. Mapping thread
2.1 Map and camera pose initialization at initial

frame.
2.2 Receive a new keyframe from tracking thread.
2.3 Extract FAST[6] features from the keyframe,

then triangulate and add to map points.
2.4 Optimize map and keyframe poses

by applying local or global bundle adjustment.

2.2 Map and camera pose initialization

While PTAM [4] needs end-user help for 3-D map
and camera pose initialization, we have imposed some
constraints on the initialized scene for excluding intru-
sive operation. It seems that end-users will train the
camera on an object that lies on a plane when they
would like to see virtual information of the objects.
Therefore, we express an initial 3-D map with a sphere
that lies on a plane and express initial camera pose so
that the camera might direct to the sphere center in

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN9-29

344

the lower side. Figure 1(c) shows the map and camera
pose initialization status described above.

In the actual scene, these constraints are slightly bro-
ken. However, 3-D map and camera poses, including
those in initial frames, are modified through a bun-
dle adjustment process[7] in Table 1, Step 2.4, as in
the Figure 1(d). We introduce a weighting coefficient
into the sum of re-projection errors as in Equation 1,
which is minimized by a Levenberg-Marquardt opti-
mizer, to improve the optimization accuracy and con-
vergence speed of bundle adjustment.

E =
∑

f

W (f)
∑

p

|xfp − x̂fp|2. (1)

where xfp is the position of a matched feature and
x̂fp is the re-projected position of a corresponding 3-
D map point. W (f) is a weighting function for the
frame. It assigns a larger value to former frames than
to later frames, since the map and camera pose nearby
the initial frame are considered to be unreliable. We
use a Gaussian function as the W (f).

������

��� �� ��� �� ��� ��

Figure 1. Map and camera pose initialization.
(a),(b) shows video image overlaid grid CG.
(c),(d) shows 3-D map and camera pose.

2.3 Segmenting outliers into moving object
points and errors

To cope with camera pose drifting and relocaliza-
tion problems that could be produced when there are
moving objects in an environment, our key idea is elim-
inating moving objects points from the 3-D map and
estimating later camera pose by using only static 3-D
points at Step1.4 shown in Table 1.

This idea will be implemented to eliminate all
matched features and corresponding 3-D map points
that were judged as outliers by a robust estimator (e.g.,
the Tukey M-Estimator). This judgment is conducted
at the camera pose estimation procedure. However,
in textureless environments particularly, it sometimes
causes drifting and relocalization problems, because
accuracy of camera pose estimation often worsens as
the number of matched features decreases. Addition-
ally, outliers caused by occlusions, specular reflections,
and other reasons within a certain frame have the pos-
sibility of becoming inliers in other frames. This is why
we segment outliers into moving object points and er-
rors. We describe below how to extract moving object
points from outliers.

2.3.1 Classification of cause of outliers

The cause of outliers on the camera pose estimation
process is separated into two types: (1) moving objects

in the scene and (2) matching errors. The second can
be further separated into five types, i.e., the existence
of (2-i) occlusions, (2-ii) specular reflections, (2-iii) tex-
tureless features, (2-iv) aperture problems, and (2-v)
repeating textural regions in the scene. Our goal in this
section is to detect the first type, i.e., moving objects
in the scene from outliers.

The reason for (2-iii), (2-iv), and (2-v) is mostly that
similar patterns exist near a correct matched feature.
These can be eliminated by using self-correlation in a
current frame. If a feature having a high correlation
score exists nearby a matched feature, we can exclude
it as a matching error falling under categories (2-iii),
(2-iv), and (2-v).

The problem is how to segment and extract features
upon moving objects with matching errors belonging to
occlusions and specular reflections. Fortunately, flow
vectors consist of projected points and matched fea-
tures on occlusions and specular reflections tend to
emanate angles because of the forced search, though
there are no correspondence points. In contrast, flow
vectors on moving objects tend to unify the angles
when the object moves, except for translation and ro-
tation around the camera’s optical axis. Considering
that flow vectors include Gaussian noise, we can ap-
proximate the distribution of angles of flow vectors as
a Gaussian Mixture Model (GMM).

2.3.2 Optical flow segmentation observed by a
fixed camera

To simplify our explanation, we first describe a
method of segmenting optical flows observed by a fixed
camera in a dynamic scene.

We first choose optical flows that have magnitudes.
Second, we eliminate optical flows caused by the ex-
istence of similar patterns by using self-correlation in
a current frame. A template is generated from pixels
surrounding each target pixel in the current frame, and
then the second-best match for this template within a
fixed rectangle region around a target pixel is found.
This is done by evaluating sum of squared difference
(SSD) scores. If the score of the second-best match
point is higher than that of a threshold, we exclude
it. Subsequently, we build an angle histogram based
on the angles of optical flows at consecutive frames,
then estimate the parameters for the GMM using the
Expectation-Maximization (EM) algorithm [8] to di-
vide the remaining optical flows into optical flows upon
moving objects and errors. Note that the changes in
the angle parameter are periodic and that there is an
adverse situation in which 0 degrees and 360 degrees
are both possible parameter values even though they
yield the same angle. To avoid this, an angle is di-
vided into two sub parameters as input data for the
EM algorithm. In particular, when the periodic pa-
rameter is θ, sub parameters are given by θ1 = sinθ,
θ2 = cosθ. Lastly, Gaussians whose mixing proportion
is sufficiently-high will be chosen as flows upon moving
objects in the scene.

An example of an angle histogram and the estimated
GMM is shown in Figure 2. In this example, GMM
containing four Gaussians is used to serve the segmen-
tation purpose. Figure 3 also shows the segmentation
results of optical flows. The left column of this fig-
ure shows original flows within a current frame, and

345

the right column shows segmented flows relative to the
estimated GMM. The red and green flows mean seg-
mented flows as moving objects. The black flow means
error flows caused by the existence of similar patterns,
and other flows mean error flows caused by other rea-
sons such as occlusions and specular reflections.

�	��
�

��
�

�

Figure 2. Angle histogram and estimated GMM

���
���

Figure 3. Segmentation result of optical flows ob-
served by fixed camera. In this sequence, objects
(a) and (b) moved to right and left, respectively.

2.3.3 Introducing outlier segmentation into the
vSLAM process

In order to extend the optical flow segmentation de-
scribed in Section 2.3.2 to the outlier segmentation ob-
served by a motion camera in a dynamic scene, we
use an estimated camera pose at the current frame. If
no matching errors occur, re-projected 3-D map points
that lie on the static scene are consistent with matched
feature points but those that lie on moving objects are
not, because the system’s map remains unchanged even
if moving objects exist in an actual scene. Therefore,
we can treat the motion camera’s flows in the same
way as those of a fixed camera’s when we re-project
3-D map points (time t−n) to the current frame (time
t) by using the estimated current camera pose.

The following steps describe the frame-to-frame out-
lier segmentation method through Steps 1.5–1.6 in Ta-
ble 1 in more detail (Steps 4–8 are the same as de-
scribed in Sec.2.3.2.).

1. When the ratio of outliers to matched features ex-
ceeds 3%, run the following eight steps. The per-
centage, which judges whether moving objects is
present, has decided through the experiment.

2. Again re-project 3-D map points that correspond
to matched features judged as outliers by a ro-
bust estimator to a current frame by using the
estimated current camera pose.

3. Create a flow vector f throughout all the outliers.
f is defined by the following equation.

f = xfp − x̂′
fp. (2)

where xfp is a position of matched feature, and

x̂′
fp is the re-projected position by using esti-

mated current camera pose.

4. Choose flow vectors whose magnitudes are larger
than 0.

5. Eliminate error flows caused by the existence of
similar patterns by using self-correlation in the
current frame.

6. Build an angle histogram based on the remaining
flow vectors.

7. Estimate the parameters for the GMM using the
EM algorithm.

8. Choose Gaussians whose mixing proportion is
more than a threshold as flow vectors upon mov-
ing objects.

9. Eliminate the 3-D map points that correspond to
point-of-flow vectors upon moving objects.

It should be noted that using the robust estima-
tor recursively would also achieve outlier segmentation,
but the recursive process would consume much compu-
tational time. This is a critical problem in real-time
camera pose estimation. In contrast, the EM algo-
rithm can separate a number of objects and errors in
one processing, and for this reason we use it.

3 Experimental results

We conducted an outlier segmentation experiment
and a camera pose estimation experiment to confirm
the feasibility of the proposed method. In these ex-
periments, we captured a number of objects lying on a
white table, and moved the camera and the objects on
a planar surface. The scene also included a laminated
business card that had specular reflection. In both
experiments, we used a webcam(Logicool Qcam Pro
4000, 640x480, 30fps) whose intrinsic camera parame-
ters were estimated by Zhang’s method [9] in advance.
We implemented the proposed method by improving
PTAM [4] on a desktop PC with an Intel Core i7 3.33-
GHz processor running on Windows 7.

3.1 Segmentation of outliers observed by a mo-
tion camera in dynamic scenes

Figure 4 shows the results of outlier segmentation.
In this sequence, the camera moved to the left and an
object moved to the right foreground. In the experi-
ments, a GMM containing three Gaussians was used
to serve the segmentation purpose. The red flow in
the figure means segmented flow vectors as a moving
object. The black flow means error flows caused by

346

the existence of similar patterns, and green and blue
flows mean error flows caused by other reasons such as
occlusions and specular reflections. Outliers segmen-
tation could be performed in around 0.6ms/point, and
it took less than 10ms/image. These experimental re-
sults indicate that the proposed method can segment
outliers in the vSLAM process effectively and rapidly.

��� �

Figure 4. Outliers segmentation results. Red
color means segmented flows as a moving object.

3.2 Camera poses estimation in dynamic scenes

To evaluate the proposed method, we compared its
results in an experiment with those of two other meth-
ods1. One is a method of modifying PTAM to remove
the 3-D map and camera pose initialization described
in Section 2.2. The other is a method that eliminates
all outliers judged in the camera pose estimation pro-
cess instead of only those in the object region. Figure
5 shows the resulting Z-coordinate trajectories of a 6-
degree of freedom (DOF) camera pose and snapshots
of an input sequence for this experiment. In this se-
quence, the camera moved on a planar surface whose
normal vector is toward the Z-axis and the user moved
an object. Therefore, the ground truth of this experi-
ment is that the trajectory of Z-coordinate is constant.
At about 400–550 frames, the user moved the object in
front of the stopped camera. At about 1,000 frames–,
both the camera and the object moved. Furthermore,
this experimental scene had only a few textures and it
included specular reflections’ objects.

Throughout this experiment, the proposed method
estimated the camera poses accurately, while both the
methods used for comparison went into drift and relo-
calization. The modified PTAM technique would drift
when an object moved because the method used the
constraint that the scene was static. The method that
eliminated all outliers would drift in the same way
because there appeared to be few remaining feature
points that resulted from eliminating feature points
upon the specular object. These results indicate that
regardless of even if a moving object is present, the
proposed method estimates camera pose stably. Addi-
tionally, with our method the sequence could mostly
be tracked in real-time.

4 Conclusion

This paper has presented a novel method for a vS-
LAM approach that is robust to dynamic scenes. The

1These comparison results are shown in more detail in the
supplemental video.

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ����

��������� �!

"�#$%&%#��%������'�	�����

('������
%�''%��'�
		%&%#��%������'�	�����

('������
%��'�
		%)��%��*��+%���
��	%��',
&%#��%������'�	�����

-����

.
��

��
�

��
��

�)	�)�	
��

������

Figure 5. Comparison of camera pose estimation

proposed method segments outliers of feature points
determined at camera pose estimation steps. It detects
features upon moving objects by building an angle his-
togram based on outliers, and by estimating parame-
ters for the GMM using the EM algorithm. Only fea-
tures upon moving objects are eliminated from outliers
to prevent the drift and relocalization problem that is
attributed to an insufficient number of features. Exper-
imental results also indicate that the proposed method
is both effective and robust vis-a-vis dynamic scenes.

As future work, we will improve EM algorithm to
automatically detect the number of moving objects in
a scene. We also intend to create a dynamic 3-D map
by using estimated feature points upon moving objects
for achieving virtual information overlay.

References

[1] E. Eade, et al.: “Scalable monocular slam,” in Proc. of
CVPR, pp.469–476, 2006.

[2] A. Davison, et al.: “MonoSLAM: Real-time single cam-
era SLAM,” Trans. on PAMI, vol.26, pp.1052–1067,
2007.

[3] D. Chekhlov, et al.: “Real-time visual SLAM using
scale prediction and exemplar based feature descrip-
tion,” in Proc. of CVPR, pp.1–8, 2007.

[4] G. Klein, et al.: “Parallel tracking and mapping for
small AR workspaces,” in Proc. of ISMAR, 2007.

[5] Z. Dong, et al.: “Keyframe-based real-time camera
tracking,” in Proc. of ICCV, pp.1538–1545, 2009.

[6] E. Rosten, et al.: “Machine learning for high-speed
corner detection,” in Proc. of ECCV, pp.430–443, 2006.

[7] R. Hartley, et al.: “Multiple view geometry in com-
puter vision,” Cambridge Univ. Press, 2nd edition,
2004.

[8] A. Dempster, et al.: “Maximum likelihood from in-
complete data via the EM algorithm,” J. Roy. Statist.
Soc. B, vol.39, pp.1–38, 1977.

[9] Z. Zhang: “A flexible new technique for camera cali-
bration,” Trans. on PAMI, vol.22, pp.1340–1334, 2000.

347

