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Abstract

Polar Cosine Transform (PCT) is one of the Po-
lar Harmonic Transforms that those kernels are basic
waves and harmonic in nature. They are proposed to
represent invariant patterns for two dimensional image
description and are demonstrated to show superiorities
comparing with other methods on extracting rotation
invariant patterns for images. However in order to in-
crease the computation speed, fast algorithm for PCT
is proposed for real world applications like limited com-
puting environments, large image databases and real-
time systems. Based on our previous work, this paper
novelly employs relative prime number theory to de-
velop Fast Polar Cosine Transform (FPCT). The pro-
posed FPCT is averagely over 11 ∼ 12.5 times faster
than PCT that significantly boost computation process.
The experimental results are given to illustrate the ef-
fectiveness of the proposed method.

1 Introduction

Rotation invariant pattern representation is one of
the essential challenges in image retrieval and pattern
recognition arises from the fact that in many real world
applications, images should be considered to be the
same even if they are rotated. Polar Cosine Transform
(PCT) as one of Polar Harmonic Transforms (PHTs)
is proposed to represent two dimensional images and
demonstrated to show superiorities comparing with
other methods [1]. With the orthogonal property, PC-
T can transform the image function to a set of mutu-
ally independent patterns with minimum redundancy
and maximal discriminant information. Unfortunate-
ly, kernel generation of these transforms involves many
trigonometric functions to compute angular and radial
parts that no fast method has been reported to best
of our knowledge. The high computational complex-
ity is the constraint for real world applications such
as realtime systems, limited computing environments
and large image databases. Therefore, reduction of the
computational complexity for PCT is very significant.
Previous work proposes fast PHTs [2]. Fast and

compact methods to compute the kernel coefficients
of PHTs are proposed by using mathematical proper-
ties of trigonometric functions. The kernel function of
PHTs has symmetry properties with respect to the x
axis, y axis, y = x line, y = −x line and origin that
can be used for fast computation. The computational
complexity of PHTs can be reduced by calculating half
of the first quadrant. That is only one eighth of the
direct transform.
In this paper,an even more efficient kernel compu-

tation method based on relative prime number theory
is proposed to compute PCT after analyzing the point
distribution on two dimensional discrete space. Much
more symmetric points are involved to compute simul-

taneously in order to significantly accelerate the trans-
form speed. This is named as Fast Polar Cosine Trans-
form (FPCT). Due to the paper length limitation, PC-
T is mainly discussed in this paper. The method we
discussed can also be used in other PHTs.
The organization of this paper is as follows. The

basic theories of PCT and fast algorithms including
mathematics descriptions are provided in Section 2.
The proposed method is presented in Section 3 af-
ter given the mathematical properties of relative prime
number theory. In Section 4, the performance of PC-
T and FPCT are compared against different images.
The experimental results illustrate the effectiveness of
proposed method. Finally, concludes this study.

2 Background

This section introduces the background of PCT and
fast algorithm .

2.1 Polar Cosine Transform

Given a 2D image function f(x, y), it can be trans-
formed from cartesian coordinate to polar coordinate
f(r, θ) ,where r and θ denote radius and azimuth re-
spectively. The following formulae transform from
cartesian coordinate to polar coordinate,

r =
√

x2 + y2, (1)

and

θ = arctan(
y

x
). (2)

It is defined on the unit circle that r ≤ 1, and can be
expanded with respect to the basis functions HC

nl(r, θ) as

f(r, θ) =

∞∑
n=0

∞∑
l=−∞

MC
nlH

C
nl(r, θ), (3)

where the coefficient is

MC
nl = Ωn

∫ 2π
0

∫ 1
0

f(r, θ)HC∗
nl (r, θ)rdrdθ. (4)

The basis function is given by

HC
nl(r, θ) = RC

n (r)e
ilθ, (5)

where

RC
n (r) = cos(πnr2), (6)

and

Ωn =

{
1
π

if n = 0
2
π

if n �= 0 (7)

and satisfying orthogonality condition

∫ 1
0

RC
n (r)R

C∗
n
′ (r)rdr =

1

2
δnn′ , (8)
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Gl(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f(x, y) + f(y, x) + f(−y, x) + f(−x, y)

+f(−x,−y) + f(−y,−x) + f(y,−x) + f(x,−y))cos(lθ) if mod(l, 4) = 0

(f(x, y)− f(−x, y)− f(−x,−y) + f(x,−y))cos(lθ)

+(f(y, x)− f(−y, x)− f(−y,−x) + f(y,−x))sin(lθ) if mod(l, 4) = 1

(f(x, y)− f(y, x)− f(−y, x) + f(−x, y)

+f(−x,−y)− f(−y,−x)− f(y,−x) + f(x,−y))cos(lθ) if mod(l, 4) = 2

(f(x, y)− f(−x, y)− f(−x,−y) + f(x,−y))cos(lθ)

−(f(y, x)− f(−y, x)− f(−y,−x) + f(y,−x))sin(lθ) if mod(l, 4) = 3

(13)

Hl(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f(x, y)− f(y, x) + f(−y, x)− f(−x, y)

+f(−x,−y)− f(−y,−x) + f(y,−x)− f(x,−y))sin(lθ) if mod(l, 4) = 0

(f(x, y) + f(−x, y)− f(−x,−y)− f(x,−y))sin(lθ)

+(f(y, x) + f(−y, x)− f(−y,−x)− f(y,−x))cos(lθ) if mod(l, 4) = 1

(f(x, y) + f(y, x)− f(−y, x)− f(−x, y)

+f(−x,−y) + f(−y,−x)− f(y,−x)− f(x,−y))sin(lθ) if mod(l, 4) = 2

(f(x, y) + f(−x, y)− f(−x,−y)− f(x,−y))sin(lθ)

−(f(y, x) + f(−y, x)− f(−y,−x)− f(y,−x))cos(lθ) if mod(l, 4) = 3

(14)

and ∫ 2π
0

∫ 1
0

HC
nl(r, θ)HC∗

n
′
l
′ (r, θ)rdrdθ = πδnn′ δll′ , (9)

where δij is Kronecker delta. Rewrite (11) with (12)-(14),

MC
nl = Ωn

∫ 2π
0

∫ 1
0

f(r, θ) cos (πnr2)

(cos (lθ)− i sin (lθ))rdrdθ
. (10)

PCT is defined on unit circle.
∣∣MC

nl

∣∣ is rotation invari-
ant. PCT need 3 trigonometric functions to generate kernel
coefficient for each point.
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Figure 1: Symmetric points on 2D space

2.2 Fast algorithm for PCT

From Polar Cosine Transform Eq. 10, we can find that
for the points on the same radius r, the different integrand
part for each point is f(r, θ)(cos lθ − i sin lθ). As Fig. 1
shown, point (x, y) is a point in first quadrant between
y = x and x axis, has other seven symmetric points with
respect to x axis, y axis, y = x, y = −x and origin.

As known sin(θ) and cos(θ) functions are periodic func-
tions with period 2π. Periods for sin(lθ) and cos(lθ) are
2π/l. Derived from the periodic and symmetric properties
of trigonometric functions that used in fast Fourier trans-
form [3], there are mathematical relationships for trigono-
metric functions respect to different l. Similar relationships
also exist for cosine function and other l values. For the
eight symmetric points on the same radius r, if their PCT
coefficients can be calculated simultaneously, then the com-
putation time for trigonometric function can be reduced.

Based on foregoing discussion, fast PCT is given by

FastMC
nl= Ωn

∫∫
D

cos(πn(x2 + y2))

(Gl(x, y)− iHl(x, y))dxdy

, (11)

where

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ x2 + y2 ≤ 1} ,
(12)

and Gl(x, y) and Hl(x, y) are given in Eq. 13 and 14. By
using this equation, the whole PCT can be generated by
using part of the basic functions.

By directly computing the PCT kernel, it takes 24
trigonometric functions for symmetric eight points. By us-
ing fast PCT equation Eq. 11, computational complexity is
reduced, only one eighth of the trigonometric is computed.

3 Fast Polar Cosine Transform

Foregoing proposed algorithm significantly boost the
computation speed. Whether it is possible to make PCT
much faster is an interesting question. Inspired by num-
ber theory [4, 5, 6], this subsection presents even faster
PCT that involve much more symmetric points calculat-
ed simultaneously, and finally named as Fast Polar Cosine
Transform (FPCT).

Given two integers a and b, with at least one of these
being nonzero. The largest positive integer that divides
both a,b is termed as the greatest common divisor of a and
b.

gcd(a, b). (15)
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Figure 2: Odd and even number size image mapping
in the first quadrant.

Here are some examples gcd(2, 6) = 2,gcd(3, 5) = 1 and
gcd(3, 8) = 1.
Given two integers a and b, they are said to be rela-

tive prime if their greatest common divisor is 1. They are
defined [4] by

a⊥b, if gcd(a, b) = 1. (16)

Conventionally 1 is relative prime to any other positive
integer [5].

1⊥a, if a ∈ N. (17)

Given an N ×N size image, there are two steps needed to
transform from image conventional cartesian coordinate to
PCT defined normalized unit coordinate. First, move the
origin from left upper corner of image to the center. The
transform equation of a point P (Xp, Yp) from original co-
ordinate to its corresponding centered coordinate (Xc, Yc)
is given by

CartesianT oCenter(Xp, Yp)

= (Xp − N − 1
2

,
N − 1
2

− Yp) = (Xc, Yc).
(18)

Second, the centered coordinate is normalized to unit. The
transform equation from centered coordinates to normal-
ized is

CenterT oUnit(Xc, Yc) = (
2Xc

N − 1 ,
2Yc

N − 1) = (x, y),

(19)
and its reverse transform equation is

UnitT oCenter(x, y)

= (
(N − 1)x

2
,
(N − 1)y

2
) = (Xc, Yc).

(20)

For example in 21 × 21 size image, cartesian coordinates
(Xp, Yp) are (12, 9), (14, 8) and (16, 7) . Based on equation
(39), after moving origin to center of image their coordi-
nates (Xc, Yc) equal to (2, 1), (4, 2) and (6, 3). Based on
equation (40), after normalized to unit their coordinates
(x, y) are (0.2, 0.1), (0.4, 0.2) and (0.6, 0.3). Fig. 2 shows
the first quadrant of 21 × 21 size image after mapping to
unit circle. We define (x, y) is a relative prime point if
satisfied

rpp(x, y) =

{
Xc⊥Yc, if N is odd

2Xc⊥2Yc, if N is even
. (21)

Given a relative prime point (x, y), for odd number size
image, the points set in same angle can be represented by

{(mx, my)|m ∈ N}, for even number size image, they can
be represented by {((2m− 1)x, (2m− 1)y)|m ∈ N}. The
relative prime points distributions of odd number size im-
age and even number size image are different as shown in
Fig. 2. When generating kernel of PCT, no need to gener-
ate the angular part if a point is not a relative prime point.
Table 1 gives a distribution of relative prime points within
a circle with different size radius.

Table 1: Distribution of Relative Prime Points in Odd
Number Size Image

Radius Relative Prime Points Probability
1-200 9544 0.614434
201-400 28657 0.610321
401-600 47746 0.609277
601-800 66847 0.608879
801-1000 85927 0.608544

Table 2: Distribution of Relative Prime Points in Even
Number Size Image

Radius Relative Prime Points Probability

1-199 3186 0.818392
201-399 9550 0.813043
401-599 15918 0.811977
601-799 22273 0.811491
801-999 28655 0.811412

Table 2 gives a distribution of relative primes but only
for odd numbers. This is useful for even number size image.
There is theoretical proof [6] to show the probability of two
randomly given integers

p(a⊥b) =
1

ζ(2)
=
6

π2
≈ 0.607927102 ≈ 61%, (22)

where ζ(z) refers to the Riemann zeta function. From
Table 1, 2 and Eq. 22, we can find that large number
of points are not relative prime points, that means their
angular part is not needed to computed when generating
the PCT kernel coefficients.

Based on foregoing discussion, faster PCT is given by

FasterMC
nl= Ωn

∫∫
A

K∑
k=1

{cos(πnk2(x2 + y2))

(Gl(kx, ky)− iHl(kx, ky)}dxdy

, (23)

where

K = � 1√
x2 + y2

�, (24)

and
A = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x,

0 ≤ x2 + y2 ≤ 1, rpp(x, y)} , (25)

�x� is floor function that return integral part of x. Given
a point (x, y) that is a relative prime point, then by mul-
tiplying a factor k all the coordinates (kx, ky) that are in
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Figure 3: symmetric relative prime points.

the same angle can be obtained. Fig 3 gives an example
to compute 24 points together.
By using Eq. 23 much more symmetric points are in-

volved, and only small number of computation is needed to
generate the kernel. We name Eq. 23 as FPCT.

3.1 Computation Complexity Analysis

Given a two dimensional function f(x, y), inverse
trigonometric function is needed to compute the polar co-
ordinates using equation (1) and (2), and trigonometric
function is needed to compute the coefficients of PCT. We
use DM to denote direct transform PCT method (section
2.1), SM to denote fast PCT method that using symmet-
ric properties [2] and RM to denote the proposed FPCT
method that use relative prime points (section 3). As a
summary , computation complexities in terms of number
of trigonometric function and inverse trigonometric func-
tion needed to generate kernel for symmetric eight points
is given in table 3. FPCT which is based on RM is the
fastest.

Table 3: Computation Complexity for PCT Kernel

Functions DM SM RM
Trigonometric 24 3 1 + 2p

Inverse Trigonometric 8 1 p
p=probability of relative prime points

4 Experimental Results

The performance of the proposed fast transforms for PC-
T in computation reduction is validated through compar-
ative experiments using various images. DM, SM and RM
based transforms are all evaluated. Images with different
resolutions and contents are tested to illustrate the effec-
tiveness and feasibility of the proposed fast transforms.
Because the relative prime point distribution is different

under odd and even number size images. In the experiment
both odd and even number size images are used to test
the effectiveness of proposed method. 20 coefficients are

computed for PCT. With same computation result, DM ,
SM and RM based transforms have different running time.
Their computation performances in terms of CPU elapsed
time are given in Table 4.

Table 4: CPU Elapsed Time for PCT

Size DM SM RM SM/DM RM/DM

200*200 3.659 0.468 0.337
0.128 0.092

199*199 3.639 0.451 0.273
0.124 0.075

DM=Direct Method, SM=Symmetric
Method, RM=Relative Prime Method

The results from Table 4 show significant reductions in
average CPU elapsed time for PCT. We can observe that
both SM and RM based transform are effective compared
with direct transform. FPCT ( RM based transform ) per-
forms best. For odd and even number size image, FPCT
only take 8% and 9% time compared with PCT respective-
ly. Computation time is significantly reduced for PCT and
similar with the theoretical analysis in Section 3.

5 Conclusion

In this paper, Fast Polar Cosine Transform is proposed.
Based on previous work, the proposed method novelly em-
ploys relative prime points to accelerate the speed. Based
on the number theory theorem, large number of trigono-
metric functions are saved when calculating points in the
same angle. FPCT is about 12.5 and 11 times faster than
PCT for odd and even number size image respectively.
Comprehensive experimental results are given to demon-
strate the effectiveness. Wide range of real world applica-
tions that need Fast Polar Cosine Transform will benefit
from this method.
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