
Binary Tree-Based Accuracy-Keeping Clustering Using CDA
for Very Fast Japanese Character Recognition

Yohei Sobu
Graduate School of Information Sciences

Tohoku University, Japan

Hideaki Goto
Cyberscience Center

Tohoku University, Japan

Abstract

Real-time character recognition in video frames has
been attracting great attention from developers since
scene text recognition was recognized as a new field
of Optical Character Recognition (OCR) applications.
There are thousands of characters in some oriental lan-
guages such as Japanese and Chinese, and the charac-
ter recognition takes much longer time in general com-
pared with European languages. Speed-up of character
recognition is crucial to develop software for mobile de-
vices such as Smart Phones. This paper proposes a bi-
nary tree-based clustering technique with CDA (Canon-
ical Discriminant Analysis) that can keep the accuracy
as quite high as possible. The experimental results show
that the character recognition using the proposed clus-
tering technique is 10.2 times faster than the full linear
matching at mere 0.04% accuracy drop. When the pro-
posed method is combined with the Sequential Similar-
ity Detection Algorithm (SSDA), we can achieve 12.3
times faster character matching at exactly the same
accuracy drop.

1 Introduction

Real-time character recognition in video frames has
been attracting great attention from researchers and
developers since scene text recognition was recognized
as a new application field of Optical Character Recog-
nition (OCR) [1, 2, 3]. Koga et al. proposed a camera-
based Japanese OCR for mobile phones [1]. Some
mobile phones sold in Japan today are OCR-capable,
although the performance is quite limited. We can
find some OCR applications for Smart Phones as well.
However, the OCR functions on such devices are only
for still images, and real-time character recognition is
currently under intensive research and development.
Iwamura et al. developed a real-time character recog-
nition method for European alphabets using an affine-
invariant pattern matching technique [2]. The method,
however, cannot be directly applied to Japanese char-
acters since many of them have multiple connected
components.

There are thousands of characters in some orien-
tal languages such as Japanese and Chinese, and the
character recognition takes much longer time in gen-
eral compared with European languages. Speed-up of
character recognition is crucial to develop software for
mobile devices such as Smart Phones and PDAs (Per-
sonal Digital Assistances) because the processor per-
formance is quite limited on those devices. In addi-
tion, reduction of computational complexity of char-
acter recognition is also very important because lower
complexity leads to longer battery duration, which is
one of the key factors in commercial success.

Faster character recognition is also beneficial for
improving the character segmentation accuracy [1].
Japanese text is written or typed without a word space,
unlike European languages, and this typesetting style
makes the character segmentation difficult. Multiple
hypothesis testing on the segmentation points is known
to be quite useful for improving the character segmen-
tation. A large number of character candidate images
need to be processed, and therefore, a faster algorithm
is required.

This paper proposes a binary tree-based clustering
technique that can keep the accuracy as quite high as
possible. CDA (Canonical Discriminant Analysis) is
employed in the proposed method in order to achieve
both higher accuracy and faster character matching
than our previous method using PCA (Principal Com-
ponent Analysis) [4]. In Sect.2, the basic, popular
method of Japanese recognition is described. Some
conventional speed-up techniques are introduced as
well. In Sect.3, the new clustering technique and the
algorithm for constructing the character dictionary are
proposed. The fast character recognition algorithm is
also given. Sect.4 gives experimental results and dis-
cussions.

2 Japanese Character Recognition and
Speed-Up Techniques

2.1 Feature Vector-Based
Japanese Character Recognition

Feature vector-based character matching is widely
used in Japanese character recognition. A text line
is segmented and character candidate images are ex-
tracted first. Some preprocessings such as size nor-
malization are applied to each character image, and a
high-dimensional feature vector is extracted from the
processed image. A lot of feature vector definitions
have been proposed so far. Peripheral Local Moment
(P-LM) feature proposed by Hori et al. is one of the
most precise features for Japanese character recogni-
tion [5]. Each feature vector is represented by a 576-
dimensional vector with floating-point values.

Let an N -dimensional feature vector be given by

v = (v1, v2, . . . , vN )T . (1)

In the simplest form of character recognition, a set of
representative vectors is used as the Character Dictio-
nary. Each representative vector corresponds to a pat-
tern class or a character. The representative vector is
often defined by the mean vector of the feature vectors
made from multiple fonts. Let Nclass and Nchar be the
number of all classes and the number of all individual
characters, respectively. We assume Nclass = Nchar

in this paper, although Nclass ≥ Nchar is possible to
make advanced dictionaries.

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN9-18

299



Let the kth representative vector in the dictionary
be represented by

mk = (mk
1 , mk

2 , . . . , mk
N)T . (2)

The similarity between the representative vector and
the feature vector of a character image to be recog-
nized can be evaluated by a distance measure such as
Euclidean one. The lower the distance is, the higher
the similarity is. The class of the top candidate can be
found by

k1 = argmin
1≤k≤Nclass

d(v, mk) , (3)

where d(. . .) represents a distance function. The rth
candidate kr can be found by searching for the repre-
sentative vector that yields the rth shortest distance.

A popular way is to measure the Euclidean distances
in the N -dimensional space. In order to achieve faster
processing, we may use squared Euclidean distance

d(v, mk) =
N∑

i=1

(vi −mk
i )2 (4)

instead. Note that the output data, k1, k2, k3, . . ., re-
main exactly the same.

A secure way for evaluating (3) is to use the match-
ing based on the full linear search (or exhaustive
search) algorithm. Since Japanese OCR engines need
to handle more than 3,000 different characters, the full
linear matching having O(Nclass ·N) time complexity
takes a long time.

2.2 Speed-Up Techniques

Several approaches have been proposed for speed-up
of character recognition.

2.2.1 SSDA

Sequential Similarity Detection Algorithm
(SSDA) [6] is effective especially when the di-
mensionality is very high. SSDA aims at reducing
the computational cost in the distance calculation.
SSDA does never introduce error, and the output data
remain exactly the same.

The full linear search is used in the SSDA-based
character matching. We use a distance accumulator
da and a variable dS for keeping the current shortest
distance. At the beginning of the search, dS is set to a
sufficiently large value. For each class k, the following
steps are executed.

1. Set da = 0 and i = 1.

2. Repeat da ← da + (vi −mk
i )2 and i ← i + 1 until

i = Nclass or da ≥ dS .
(The second condition should be tested at every s
iterations, not at every time.)

3. If da >= dS then go to Step 5.
(i.e. abort the current distance calculation)

4. If da < dS then set dS = da and k1 = k.

5. k ← k + 1

If s is too small, the additional condition testing
leads to longer running times. Since the optimal value
of s is dependent on the input data, the order of classes
in the dictionary, and the computer hardware, we set
s = 8 empirically in this paper.

2.2.2 Coarse-to-fine approach

Coarse-to-fine approach are also effective in speed-up
of character recognition. The input character image is
roughly classified at the coarse recognition stage, and
a group of characters is found. Within the group, fine
recognition using the original representative vectors is
performed. A clustering technique such as k-means is
used to find the groups of similar characters.

Suppose we have Nclass original classes and Nr clus-
ters, each of which contains some classes. If we assume
that the original classes are distributed to the clusters
uniformly and that no member overlap between clus-
ters is allowed, the average number of the classes in
a group is Nclass/Nr. The expected running time is
O(Nr) + O(Nclass/Nr). However, some accuracy drop
is unavoidable as no cluster overlap is allowed.

2.2.3 Dimensionality reduction

It is known that the dimensionality of the raw fea-
ture vector is in general too high for precise character
recognition. The dimensionality can be made smaller
to some extent by a subspace method. The smaller di-
mensionality contributes directly to higher processing
speed, although the degree of the speed improvement
is low if the original dimensionality is not so high. If a
proper dimensionality is chosen and a good subspace
is found, the accuracy could also be improved.

Note that various dimensionality reduction tech-
niques can be combined with our clustering technique
described in the next section.

3 Binary Tree-Based Accuracy-Keeping
Clustering / Recognition

3.1 Accuracy-Keeping Clustering

We propose a simple yet powerful clustering tech-
nique using a binary tree combined with CDA (Canon-
ical Discriminant Analysis). The constructed binary
tree will be used as a BST (Binary Search Tree) in the
fast character recognition algorithm.

In CDA, the dimensionality of the feature vectors
must be smaller than the number of classes. In or-
der to allow small sub-classes during the clustering, we
apply a dimensionality reduction technique before the
clustering. This can be achieved by using PCA (Prin-
cipal Component Analysis). When the dimension of
the feature space is reduced to n by transform matrix
P calculated by PCA, the kth representative vector in
the dictionary is derived from (2) as

mk
r = Pmk = (mk

1 , mk
2 , . . . , mk

n)T . (5)

Figure 1 shows the data structure of the character
dictionary and how the clusters of representative vec-
tors are created. At the beginning, all the representa-
tive vectors of characters in the dictionary are put into
the initial cluster (1,1). In other words, the cluster
(1,1) contains Nchar characters.

CDA is applied to the cluster and the first canon-
ical vector (axis) vc is found. The projection of the
character k onto the first canonical vector is

rk,c = vc ·mk
r , (6)

300



Figure 1. Binary tree-based clustering.

Figure 2. Cluster cut.

which is a scalar value, where the suffix c is the cluster
identifier. The cluster is cut into two pieces at the cut
point

Hc =
1

Nc

∑

k∈cluster c

rk,c , (7)

which represents the hyperplane in the n-dimensional
space, where Nc is the cluster size. The clusters are
recursively cut as shown in Figure 1 until one of the
following conditions is satisfied.

K1 ≥ Nc , (8)
K2 ≤ max(lc,1, lc,2) , (9)
K3 ≤ (depth of the node) , (10)

where K1, K2 and K3 are pre-defined parameters, and
lc,i = Nc,i/Nc (i = 1, 2) is the child cluster size divided
by the current cluster size assuming the cluster is cut.

If we cut the cluster at Hc sharply without any over-
lap, the character recognition accuracy would deteri-
orate significantly as some classification error are in-
troduced around the boundary. In order to keep the
accuracy, we allow some overlap between the clusters
as shown in Fig.2. The characters around the boarder
Hc should belong to both clusters.

We take into account the variations in vector local-
ization. Although the orientation of the first canonical
vector is expected to be suitable for many characters,
the other characters may have wider distributions in
the feature vectors along the first canonical vector. In
this method, the first canonical vector is found using
the representative vectors. Then, for each font, the in-
terval ri,c±α ·σc is calculated, where α is a pre-defined
parameter and σc is the standard deviation within the
original class. If the cut point Hc falls in the inter-
val, the corresponding character should belong to both
clusters. If the different fonts for a character fall in
both clusters, the character should belong to both clus-
ters also (Fig.3).

3.2 Fast Character Recognition Algorithm

We construct a Binary Search Tree (BST) as shown
in Fig.1 for fast character recognition. Each node has

Figure 3. Cluster cut using multifont vectors.

a pair of vT
c P and Hc. Only the leaf node has the cor-

responding cluster data, which is the set of character
identification numbers.

Given an input character vector v, the search begins
at the root node. The product (vT

c P )v is calculated
and compared with the threshold Hc. When the search
hits a leaf node of the BST, the character recognition
by the linear search is performed within the cluster.

The time complexity is O((tree height) ·N)+O(K1 ·
N) � O(K1 · N) if the tree height is small enough.
Therefore, the expected overall speed-up is Nchar/K1

in our proposed method. In the extreme case where
no cluster overlap is allowed and K1 → 1, the tree
height becomes O(log Nchar), which is much smaller
than O(Nchar), according to the property of BST.

4 Experimental Results and Discussions

4.1 Experimental Setup

Throughout the experiments, we use 2,965 Kanji
characters from JIS (Japanese Industrial Standards)
Level 1. The following six TrueType font sets are used;
IPA P Gothic, IPA UI Gothic, VL P Gothic, Sazanami
Gothic, IPA P Mincho, and Sazanami Mincho. Each
character image of size 56× 56 pixels is rendered elec-
tronically. We use the leave-one-out method to evalu-
ate the accuracies and the running times. In one con-
figuration, one of the font sets is used as the unknown
data, and the other five are used for dictionary. All the
measured values are represented by the mean values of
all six configurations unless otherwise mentioned.

The PC used in the experiments is equipped with
Athlon 64 3700+ (2.4GHz) and 2GB memory.

We evaluate the performances of our PCA-based
method [4] as well for comparison purposes. The clus-
tering and matching algorithms of the former method
are the same as those in our new method except that
PCA is used instead of CDA and that no dimensional-
ity reduction is used.

4.2 Parameter Tuning

For comparison purposes, we set K2 = 0.97 and
K3 = 17, which are the same values respectively as
those in [4].

The impact of K1 to the running time is greater than
that of α. We can easily see that a combination of small
K1 and large α yields shorter running time with respect
to the same accuracy. K1 = 300 is used in the rest of
this paper. To make the feature dimensionality lower
than K1 = 300, PCA is applied to the dictionary in
the original 576-dimensional feature vector space, and
the top 256 eigenvectors are used as the basis vectors
of the new 256-dimensional feature vector space.

301



Table 1. BST size (K1 = 300, input font: IPA P
Gothic).

num. of ave. depth ave. num. of
α clusters of clusters chars./cluster

CDA 0.2 37 5.3 247.1
0.4 118 6.9 237.0
0.6 524 9.0 260.7

PCA[4] 0.6 4,492 12.3 269.3

0

2

4

6

8

10

12

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6
α

rec ra�o 
(K_1:300)

speed ra�o 
(K_1:300)

re
la

�
ve

ac
cu

ra
cy

Figure 4. Relative accuracies and speed-up ratios.

4.3 Performance Evaluation

Figure 4 shows the relative accuracies and the char-
acter matching times with respect to various α val-
ues. The original accuracy obtained by the full linear
matching is 99.75%, and the matching time is 17.0sec.
The average time per character is 5.73ms, which cor-
responds to 5.82 characters per video frame at 30fps.

Higher α is desirable to keep the accuracy as high
as possible, although the speed-up ratio deteriorates
as the parameter α increases. We have achieved very
high relative accuracy 99.96% and speed-up ratio 10.2
at α = 0.6.

Table 1 shows the BST size. Compared with our
PCA-based method [4], the number of clusters is much
smaller in our new method. The amount of mem-
ory for the index table (cluster data) is 2.6MB in the
proposed method, while the method in [4] requires
22.1MB. Thus, the new method is quite efficient in
memory consumption.

4.4 Performance Comparison

Some conventional speed-up techniques can be used
together with the proposed method as described in 2.2.
By introducing SSDA, we can obtain some speed im-
provement without sacrificing the accuracy.

Table 2 shows the performance comparison using
various speed-up methods. When SSDA is used to-
gether, the speed-up ratio reaches 12.3. The processing
time 1.38sec corresponds to 71.6 characters per video
frame at 30fps. Further speed improvement would be
necessary when we develop a real-time on-the-fly OCR
application for mobile devices, although the achieved
speed is satisfactory on a desktop computer.

The proposed CDA-based method outperforms the
PCA-based method [4] with respect to all the aspects
of accuracy, speed, and memory consumption.

Table 2. Performance comparison using various
speed-up methods.

accuracy time relative
(%) (sec) speed

full linear matching 99.75 17.01 1 (ref.)
full linear matching 99.75 11.92 1.43

with SSDA
proposed method 99.71 1.67 10.2
proposed method 99.71 1.38 12.3

with SSDA
PCA-based method [4] 99.53 2.05 8.30

(α = 0.7)
PCA-based method [4] 99.53 1.72 9.89
with SSDA (α = 0.7)

The higher accuracy is probably due to the fact that
CDA takes into account the intra-class variances while
PCA does not in finding the principal vectors.

5 Conclusions

Very fast Japanese character recognition algorithms
are crucial for developing software for mobile devices,
for realizing real-time OCR, and even for improving
character segmentation performance. In this paper, we
have proposed a binary tree-based clustering technique
with CDA that can keep the character recognition ac-
curacy quite high. The BST-based character recogni-
tion algorithm runs at the speed 10.2 times faster than
the full linear matching with merely 0.04% accuracy
drop.

Further optimization of the clustering, especially the
cluster cut criteria, is included in our future work.

Acknowledgement

A part of this work was supported by Grants-in-Aid
for Scientific Research No.22300194 from JSPS.

References

[1] M. Koga, R. Mine, T. Kameyama, T. Takahashi, M. Ya-
mazaki, and T. Yamaguchi: “Camera-based Kanji OCR
for Mobile-phones: Practical Issues,” Proc. of ICDAR
2005, pp. 635–639, 2005.

[2] M. Iwamura, T. Tsuji, A. Horimatsu, and K. Kise:
“Real-Time Camera-Based Recognition of Characters
and Pictograms,” Proc. of ICDAR 2009, pp. 76–80,
2009.

[3] H. Goto and M. Tanaka: “Text-Tracking Wearable Cam-
era System for the Blind,” Proc. of ICDAR 2009 Vol-
ume 1, pp. 141–145, 2009.

[4] Y. Sobu, H. Goto, and H. Aso “Binary Tree-Based
Precision-Keeping Clustering for Very Fast Japanese
Character Recognition,” Proc. IVCNZ 2010.

[5] K. Hori, K. Nemoto, and A. Itoh: “A Study of Feature
Extraction by Information on Outline of Handwritten
Chinese Characters — Peripheral Local Outline Vector
and Peripheral Local Moment —,” Trans. IEICE D-II,
vol. J82-D-II, no. 2, pp. 188–195, 1999 (in Japanese).

[6] D. Barnea and H. Silverman: “A Class of Algorithms
for Fast Digital Image Registration,” IEEE Trans. on
Computer, vol. C-21, no. 2, pp. 179–186, 1972.

302


