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Abstract

We present a fast and accurate method to compose
images delivered by a quadocular document scanner
into a global consistent image. The Shift Detection
by Restoration (SDR) approach is used to overcome
document deformations. Our method outperforms state
of the art panoramic image approaches and is able to
work within one second on standard hardware.

1 Introduction

The today’s increasing mobility and the raised safety
consciousness demands new solutions for identifying
persons like air plane passengers quickly. For this reason
novel document scanner devices are requested which
are capable to process this high amount of data reliably
as well as fast. The FP500 (cf.Fig. 1a, [1]) is a recent
developed passport scanner for applications at security-
relevant places like airports or public authorities. Due
to price reduction, headway limitation and avoiding
inappropriate distortions, this device is built up by four
single low-cost cameras. A previous processing step
provides precalibrated and undistorted images assuming
an ideally planar document.
Since this assumption does not hold for real docu-

ments, we describe a method to compose these partial
images of naturally bended documents to a global con-
sistent overall image. This composing step is designed
using an estimation of local optical flow via Shift Detec-
tion by Restoration (SDR) [3, 8]. The main attention of
this approach lies on short computation times and high
accuracies even under suboptimal conditions. Further-
more, the composing result should be free of non-linear
deformations to achieve the machine-readability of the
document. We show that the composing step is able to
provide sufficient results within less than one second
on standard hardware.

The remainder is structured as follows: after a short
review of the related work in section 2 and a brief
problem statement in section 3, our approach will be
depicted in section 4. Some experimental results and
a short summary and outlook will follow in sections 5
and 6, respectively.

2 Related Work

The problem of image stitching or panoramic im-
age creation is concerned in a high amount of litera-
ture. There are two main approaches: on the one hand,
searching for curves in overlapping image regions to
find an optimal seam by minimizing the error between
these images, as presented in [5, 6, 7]. On the other
hand, the approaches published in [2, 9] try to minimize

(a) (b)

Figure 1. (a) A pathologically bended document
lying on the Desko FP500 Passport Scanner [1] and
(b) the result of composing according to the initial
calibration.

the seam artefacts by smoothing the transitions at the
stitching contour. Furthermore, Brown and Lowe pub-
lished an approach for multi-row stitching in [4]. Nearly
all of these panoramic image approaches premise an
approximately identical optical center for all cameras
recording the images to be stitched.

3 Problem Statement

In the given scenario, documents are captured by
a scanner device containing four low-resolution CCD
cameras. While the extrinsic calibration of these cam-
eras assumes that the scanned document is exactly
planar, this premise does not hold in real applications,
e.g. due to surface deformations caused by storage and
handling (cf.Fig. 1a). Even putting pressure onto the
document and the glass plate bends its surface and
provokes this effect. Hence the composing of the single
images solely according to the calibration data fails in
nearly all cases, as shown in Fig. 1b. In this section we
present our approach for transforming and composing
all images in order to obtain a global consistent image.
The composition of the single images using any of

the known panorama image algorithms induces hard
local nonlinearities and deformations, which constrict
further processing, e.g. optical character recognition
(OCR). Common panorama image approaches premise
a mutual optical center for all images to be stitched,
from where the images are projected onto spherical or
cylindrical surfaces. Fig. 2 shows these effects, where
subfigures (a) and (b) display the result of stitching
both the uncalibrated and the calibrated images with
Brown’s and Lowe’s approach [4] for panorama image
stitching. Note that the stitching process fails when
the loop has to be closed, because the errors due to
the transformations cumulate. This effect complicates
further information extraction algorithms and yield
undesirable results.
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(a) (b)

Figure 2. Panorama images generated by Auto-
Stitch [4] based on (a) the uncalibrated and (b) the
calibrated images.

4 Composing Approach

For composing the images, corresponding points have
to be found in the image overlap areas. Based on
these correspondences, transformations are estimated
for all the images. To increase the accuracy, outliers
are rejected and all transformations are reestimated.
The final transformations are applied to the images to
obtain a global consistent image. These steps will be
explained in more detail in the following sections.

Local optical flow estimation The transfor-
mation estimation is based on the determination of
optical flow in the overlapping image regions. The Shift
Detection by Restoration (SDR) approach [3, 8], which
can be seen as a regularized correlation similar to the
phase correlation, has been shown to give good results
for point correspondence identification, especially under
presence of partly periodically structured background.
In contrast to the usage of spatial features, this method
determines the displacement of two equal- and square-
sized images in a signal-based fashion by creating a
peak image, where each peak corresponds to a shift
hypothesis d. In Fig. 3 some exemplary input patches
are shown in context with their SDR results. As dis-
criminating these peaks would state a strong heuristic
problem, each peak hypothesis d is evaluated by the
normalized cross correlation coefficient

ρ(d) =

∑
(p+d)∈I1

(I0(p)− I0)
2 · (I1(p+ d)− I1)

2

√∑
p∈I0

(I0(p)− I0)
2 ·

∑
(p+d)∈I1

(I1(p+ d)− I1)
2

(1)

of the original image patch I0 and the hypothetical
shifted image patch I1, where Ik denotes the mean gray
value of image Ik. The shift hypothesis with the highest
value of ρ(d) is added to the set

cκ =
{
(pκ

1 ,q
κ

1 ) , . . . ,
(
pκ

nκ

,qκ

nκ

)}
, (2)

where the tuple (pκ

i ,q
κ

i ) denotes a correspondence be-
tween the points pκ

i ∈ Iκ0 and qκ

i ∈ Iκ1 in the overlap-
ping image area κ (cf.Fig. 4).

Transformation estimation Once the optical
flow fields in the overlapping regions are determined,
these information are used to estimate transformations
for each image. Translations and special affine trans-
formations are used for this application. As depicted
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Figure 3. Image patches with (a, d) structured back-
ground, (b, e) foreground shifted horizontally and
(c, f) vertically and (g–i) their SDR images, where
white peaks are indicating the shift hypotheses. Note
the suitability of this method for the partial periodi-
cal background structure of the images.

in Fig. 4, each transformation is assembled by opposing
shear mappings and translations. Using these parame-
ters, the transformation matrices

M =

⎧⎪⎪⎨⎪⎪⎩
M0︷ ︸︸ ︷(
1 s0x
s0y 1

)
,

M1︷ ︸︸ ︷(
1 −s0x
s1y 1

)
,

M2︷ ︸︸ ︷(
1 −s3x
−s1y 1

)
,

M3︷ ︸︸ ︷(
1 s3x
−s0y 1

)⎫⎪⎪⎬⎪⎪⎭ (3)

and translation vectors

t =

⎧⎪⎨⎪⎩(a0x, a
0
y) = 0︸ ︷︷ ︸
t0

, (a1x, a
1
y)︸ ︷︷ ︸

t1

, (a2x, a
2
y)︸ ︷︷ ︸

t2

, (a3x, a
3
y)︸ ︷︷ ︸

t3

⎫⎪⎬⎪⎭ (4)

can be built. To enforce global consistency, the trans-
formation matrices are circularly linked by mutual pa-
rameters. With respect to these transformations, each
target pixel p̂ is originated from input pixel p according
to

p̂ = M−1
i · (p− ti), i ∈ {0, . . . , 3} ,p ∈ Ii. (5)

The free parameters are estimated by solving the linear
equation system stated in App.A in the least-squares
sense. The first translation vector t0 = (a0x, a

0
y) is fixed

in order to obtain a unique result, while the weighting
factor ωκ = (nt+nr+nb+nl)/nκ stated in App.A ensures
that no overlapping area is favored over the others.

Outlier rejection As a consequence of the pres-
ence of homogeneous areas and the poor camera resolu-
tion, the displacement vector fields are likely to contain
some outliers disrupting the transformation estimation.
For this reason, an outlier rejection is used to achieve
an outlier-free displacement vector field.

Given the complete shift vector field, initial transfor-
mations are estimated. According to these transforma-
tions, the correspondences with the highest backprojec-
tion errors are removed. These steps are repeated re-
cursively until some predefined abort criterion, e.g. the
highest tolerable error, is satisfied.
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Figure 4. The transformations to be estimated and
their parameters.

(a)

(b)

Figure 5. An optical flow vector field within the up-
per overlapping area (a) before and (b) after outlier
rejection.

Fig. 5 shows an exemplary displacement vector field
of the upper overlapping region before and after the
outlier rejection.

5 Examples and Experimental Evaluation

Since this approach optimizes the visual quality of the
composed image, just some exemplary results are shown
in Fig. 7 in place of quantitative measures. Practical
experiences show that OCR performed on the resulting
images is working correctly in about 95% the cases.
For evaluating the runtimes of this method, we per-

formed tests on a desktop computer equipped with an
Intel R© CoreTM2 Quad Q9300 CPU at 2.50GHz
and 8GB of RAM as well as a notebook computer
with an Intel R© SU4100 CPU at 1.3GHz and 2GB
of RAM.

For our time measurements we used the bended doc-
ument shown in Fig. 7a and tried to compose it both
with interpolation during the initial precalibration as
well as the full document composing and without any
interpolation. We implemented our methods in C++
disregarding any further optimization techniques like
parallelization or specialized data structures.
In Fig. 6 one can see, as expected, that the runtime

of our approach is strongly correlated with the size of
the patches used for the shift detection. The abrupt
declinations were caused by the SDR-intern Fourier
transforms benefiting from patch sizes of the powers
of two. Obviously, the interpolations were responsible
just for a small amount of the runtimes, which can
be dropped without a noticeable loss of quality. On
desktop computers, documents with displacements up
to 55 pixels can be composed within one second. For
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Figure 6. Runtimes obtained for composing the
document shown in Fig. 7a on different hardware
environments.

displacements of about 40 pixels, composing times of
about half a second are possible. Reproducing the
experiments on the notebook setup solely doubled the
runtime.

6 Conclusion and Outlook

We presented an approach to compose subimages
taken of a bended document using a quadocular cam-
era setup. Our method used a signal-based correspon-
dence detection via SDR. Experiments showed that our
proposal yields accurate results as well as moderate
computation time.
For further speedup, the parallelism of the indepen-

dent image processing steps should be exploited. Fur-
thermore the Fourier transforms used by SDR could
also be implemented on parallel hardware architectures
like GPUs in order to decrease the runtime.
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A Equation System used for Parameter Estimation
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωt 0 0 0 0 0 −(pt1,y+qt1,y)·ωt 0 0 0

0 ωt 0 0 0 0 0 −pt1,x·ωt qt1,x·ωt 0

...
...

...
...

...
...

...
...

...
...

ωt 0 0 0 0 0 −(ptnt,y
+qtnt,y

)·ωt 0 0 0

0 ωt 0 0 0 0 0 −ptnt,x
·ωt qtnt,x

·ωt 0

ωr 0 −ωr 0 0 0 −pr1,y ·ωr 0 0 qr1,y ·ωr

0 ωr 0 −ωr 0 0 0 0 (pr1,x+qr1,x)·ωr 0

...
...

...
...

...
...

...
...

...
...

ωr 0 −ωr 0 0 0 −prnr,y·ωr 0 0 qrnj,y
·ωr

0 ωr 0 −ωr 0 0 0 0 (prnr,x+qrnr,x)·ωr 0

0 0 ωb 0 −ωb 0 0 0 0 −(pb1,y+qb1,y)·ωb

0 0 0 ωb 0 −ωb 0 pb1,x·ωb qb1,x·ωb 0

...
...

...
...

...
...

...
...

...
...

0 0 ωb 0 −ωb 0 0 0 0 −
(
pbnb,y

+qbnb,y

)
·ωb

0 0 0 ωb 0 −ωb 0 pbnb,x
·ωb qbnb,x

·ωb 0

0 0 0 0 ωl 0 −ql1,y ·ωl 0 0 pl1,y ·ωl

0 0 0 0 0 ωl 0 −(ql1,x+pl1,x)·ωl 0 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 ωl 0 −qlnl,y
·ωl 0 0 plnl,y

·ωl

0 0 0 0 0 ωl 0 −
(
qlnl,x

+plnl,x

)
·ωl 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A∈R10×2·(nt+nr+nb+nl)

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
x

a2
x

a2
y

a3
x

a3
y

a3
y

s0x
s0y

s1y

s3x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x∈R10

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pt1,x−qt1,x)·ωt

(pt1,y−qt1,y)·ωt

...
(ptnt,x

−qtnt,x
)·ωt

(ptnt,y
−qtnt,y

)·ωt

(qr1,x−pr1,x)·ωr

(qr1,y−pr1,y)·ωr

...
(qrnr,x−prnr,x)·ωr

(qrnr,y−prnr,y)·ωr

(qb1,x−pb1,x)·ωb

(qb1,y−pb1y)·ωb

...
(qbnb,x

−pbnb,x
)·ωb

(qbnb,y
−pbnb,y

)·ωb

(ql1,x−pl1,x)·ωl

(ql1,y−pl1,y)·ωl

...
(qlnl,x

−plnl,x
)·ωl

(qlnl,y
−plnl,y

)·ωl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b∈R2·(nt+nr+nb+nl)

B Exemplary Results

(a) (b)

(c) (d)

Figure 7. These images show (a) an extremely bended document and (c) a checkerboard image both composed
according to the initial calibration and the results of our approach in Figures (b) and (d) respectively. Note the extent
of the affine transformations visualized by the straight lines highlighted in image (b) as well as the checkerboard
structure in image (d).
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