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Abstract

The steel strips produced in steel-making plants, are
used as raw material in many other industries, so qual-
ity control is an essential aspect. One factor that indi-
cates the quality of a steel strip is the number of defects,
such as holes or scratches, on its surface. This paper
describes a technique to detect an especially harmful
type of surface defect called periodical defect. These de-
fects are a periodic pattern on the surface of the strip.
Using a backtracking algorithm all the individual de-
fects contained in the strip are examined to determine
which defects compose a set which constitutes a peri-
odical defect.
An implementation of this clustering technique was
tested using a set of real steel strips, whose charac-
teristics were previously stored in a database. A test
environment to quantify the goodness of the results and
to determine the best values to parameterize the clus-
tering algorithm has also been developed.

1 Introduction

During the rolling of steel strips, periodically re-
peated defects can occur. Such defects are particularly
detrimental to the quality of a steel strip, because they
do not consist of a single mark on the surface of the
strip, but of many marks along the length of the strip,
creating a periodic pattern.
These defects are characterized as being a series

of marks in the same transversal coordinate, being
equally spaced at a constant distance in the longitu-
dinal coordinate, and having the same shape. A set of
these defects is called a periodical defect. It is impor-
tant to detect the existence of these defects as soon as
possible to prevent their occurrence in the next steel
strips to be rolled. If these defects are not detected,
the steel strips may be unsuitable for marketing. Hav-
ing effective software to perform this task will not only
improve steel strip quality, but will also avoid the fi-
nancial loss caused by having to discard defective steel
strips.

2 Industrial Context

To understand how periodical defects are generated
and how they can be detected, it is necessary to know
some aspects of the steel rolling process in steel mills.
The strips are derived from large pieces of steel,

called slabs, extracted from a furnace at a high temper-
ature (about 1200◦C). Then, the steel passes through
a rougher mill, where pressurized water (180Kg/m2) is
applied to the strip to remove the scale generated dur-
ing heating. Next, the steel travels along a roll path

until it reaches the finishing mill, where seven stands
are serially arranged to apply pressure to the strips one
after another. The steel is stretched and flattened into
a strip of great length. Then, while dragging the steel
strip on another roll path, it is cooled by applying wa-
ter curtains. Finally, the steel strip is rolled to form a
coil.
Each stand of the finishing mill has a pair of work

rolls, which press the hot steel. The state of these rolls
is critical because they are in direct contact with the
steel, applying high pressure. Rolls with a damaged
surface produce periodical defects.
It is imperative to replace the rolls that are imprint-

ing defects as soon as possible. A damaged work roll
marks the steel strips, producing periodical defects
with a constant period. The final goal of the tech-
nique presented in this work is to determine which roll
of which stand is causing the periodical defects, using
the longitudinal and transversal coordinates of all the
individual defects on the surface of a strip. This task
must be done quickly (within one minute) in order to
provide the result before starting the rolling of the next
strip.

3 Detection of Individual Defects

To determine which of the individual defects are
caused by a defective work roll, the position of all the
defects on both the top and the bottom surfaces of
each strip must be identified. This task is performed
by an external computer vision system, which inspects
the entire surface of both sides of the steel strips.
Images captured by each camera are processed in

real time, in order to detect individual defects (see Fig-
ure 1). The position (longitudinal and transversal) of
each defect and the area it occupies, are stored in a
database for further processing.

Figure 1. Detection of an individual defect

Once this task is done, the information about each
individual defect detected on both surfaces of the strip
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is available in the database. Now, the task is to deter-
mine which defects have been generated by damaged
roll, and to quickly cluster them into periodical defects.

4 Clustering of Individual Defects

Once information about the position and size of all
the individual defects on the strip is available, it re-
mains only to cluster those that are part of the same
periodical defect. To design an algorithm to cluster
individual defects into a periodical defect, the features
of periodical defects must be defined.

4.1 Defect description

A periodical defect can be defined as a set of individ-
ual defects located in the same transversal coordinate
of the strip, spaced evenly along the longitudinal coor-
dinate. Surfaces may have more than 2,000 individual
defects to examine. To determine whether a number of
these defects constitutes a periodical defect, the condi-
tions mentioned in the Introduction must be fulfilled:
they are all situated in the same transversal coordinate
and equally spaced by a constant distance in the lon-
gitudinal coordinate. The search space created is too
large to be explored in a short period of time. For this
reason, it is crucial to bound it. [1] proposes a method
to estimate the period length of periodical defects pro-
duced by each of the work rolls, taking into account
their radii, work roll spacing and the separation be-
tween the rolling stands. The relationship between the
thickness reduction of the strip and the increment of
its length can be easily established, as shown in Figure
2.
In this example, a damaged work roll generates a

periodical defect whose period length is L when the
thickness of the strip is S. If the gap between the rolls
of the next stand is S/2, the thickness of the steel strip
passing through it is also S/2. By halving its thickness,
so that the steel volume remains constant, its length
shall be doubled (2L). Thus, considering the initial
thickness of the steel and the gap between the work
rolls of each stand, the period length of the periodi-
cal defects produced by each stand can be estimated.
With this information, we can avoid the task of finding
individual defects repeated with any period. We seek
only periodical defects whose period length coincides
with the estimated lengths calculated in this manner.
This greatly reduces the search space.
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Figure 2. Relation between the reduction of thick-
ness and the elongation of the strip

In most cases only the defects imprinted by the last
three work rolls can be detected. The severity of the
defects produced by the first rolls is mitigated when
the steel is smoothed by subsequent rolls. Thus, for the

first four work rolls, only very serious defects can be
detected. For this reason, almost all periodical defects
have a period length between 2 and 3m.

4.2 Clustering Algorithm

Before individual defects can be efficiently clustered,
they must be stored in memory using an appropriate
data structure. In this case, we propose the use of
sparse matrices. Thus, the steel strip is treated as a
matrix where the longitudinal and transversal coordi-
nates of a single defect may be used as indexes in this
matrix. By using the methods of storage of sparse ma-
trices [2], no memory is wasted storing large numbers
of elements (zones of strip surface) with no defects.
The algorithm must examine the non-zero elements

of the matrix (individual defects), and check if other
non-zero elements meet the requirements of a period-
ical defect. To seek a periodical defect with period
length N , the algorithm must check if there are non-
zero elements in the positions of the strip whose in-
formation is stored in matrix[i, j], matrix [i+N, j],
matrix[i+2N, j] and so on. This process is repeated
until no individual defects are detected in the desired
position in the matrix. Once an individual defect is
identified as belonging to a periodical defect, it must
be labelled as CLUSTERED to avoid including it in
a subsequent search. Naturally, for this algorithm to
work properly, it must be given some flexibility. Oc-
casionally an individual defect which belongs to a pe-
riodical defect cannot be found in a particular posi-
tion although it is known to exist. This can occur if,
when processing images for individual defects, they are
placed in slightly different positions.
Figure 3 shows individual defects detected in the

previous phase by the computer vision system, cor-
responding to the same periodical defect. Although
the individual defects are identical in shape, the sys-
tem has generated a rectangle with a different area
and position for each of them. This makes it necessary
to establish a transversal tolerance and a longitudinal
tolerance around the position where the search is to
be carried out. Thus a rectangle (also called a search
area) is defined to seek the individual defect within it.

Figure 3. Detection of individual defects

It must also be noted that in strips with a high den-
sity of individual defects, two defects that are not gen-
erated by the same work roll may be located in posi-
tions matrix[i, j] and matrix[i+N, j] (where N is the
theoretical period length of one work roll). If the de-
fect density is high enough, this could happen not only
with two individual defects, but with three or four. To
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prevent these individual defects from being clustered
as periodical defects, the algorithm must be parame-
terized to avoid clustering fewer than a certain num-
ber of individual defects. This number should be large
enough to make it virtually impossible to cluster non-
periodic defects as described above.
Another problem that arises quite often is that when

processing images, the computer vision system fails to
detect an individual defect. This usually occurs with
ill-defined defects or superficial scratches. If the search
is stopped when an individual defect is not found, parts
of this periodical defect may not be classified. To avoid
this, the search algorithm must continue even if a num-
ber of individual defects are not detected consecutively.
Thus, 5 parameters are established that will allow

some flexibility for the search:

• Min Defs: Minimum number of individual defects
which must to be clustered in a periodical defect.

• Max Skips: Maximum consecutive individual de-
fects undetected before stopping the search.

• T Tol: Width of the search area.

• L Ratio: Ratio between the length of the search
area and the theoretical period length of the work
roll whose periodical defects are being sought.

• A Ratio: Ratio between the average area of the
individual defects clustered in a periodical defect
and the area of an individual defect to be included
in the same periodical defect.

As the search space has been largely reduced, a back-
tracking algorithm [3] can be used to explore it, tak-
ing into account the parameters described above. An
implementation of backtracking algorithms can be an-
alyzed in [4]. In an attempt to make the classical
backtracking algorithm as efficient as possible, some
improvements have been introduced to reduce compu-
tation time [5]. Combining this with the reduction of
the search space [6], the individual defects of a complex
strip can be clustered in several seconds. A simplified
pseudo code of the algorithm is shown below.

for each defect d do

d.clustered=FALSE
end for

for each workroll D do

PeriodicalDefect pd
for each defect d //matrix[x,y] do

if d.clustered == FALSE then

Section sec← d
Search(x + D, y, sec,Max Skips)

end if

end for

if sec.size ≥Min Defs then

pd← sec
end if

end for

Procedure SearchArea (i, j)
for a = i− T Tol to i + T Tol do

for b = j − L Ratio to j + L Ratio do

if matrix[a, b] �= 0 then

return (a, b)
end if

end for

end for

return 0
End Procedure

Procedure Search (i, j, sec, skips)
if SearchArea(i, j) �= 0 then

if matrix[a, b].clustered == FALSE and

matrix[a, b].area ≤ A Ratio ∗ sec.AvgArea then

sec← matrix[a, b]
matrix[a, b].clustered = TRUE
Search(a + D, b, sec, skips)

end if

else

if skips �= 0 then

Search(i + D, j, sec, skips− 1)
else

return

end if

end if

End Procedure

5 Evaluation

To evaluate the degree of goodness provided by the
algorithm, a set of test strips was examined to seek
their periodical defects automatically using the algo-
rithm. The results were compared with those provided
by an experienced operator. The results provided by
the expert are considered the optimal solution, and are
referred to as the “ground truth”. The expert clustered
the individual defects of each of the test strips manu-
ally (using a tool).
Once the ground truth is available, the ideal configu-

ration of the algorithm can be determined. The objec-
tive of this task is to determine the most appropriate
value for each configuration parameter. The clustering
algorithm must be flexible enough to work acceptably
with strips of different characteristics.

5.1 Metrics

To qualify each solution (clustering) generated au-
tomatically by the algorithm it is necessary to apply
some kind of metric. In the survey carried out by [9],
metrics are classified into two types: analytical and
empirical. Analytical metrics evaluate the algorithms
themselves. Empirical metrics evaluate an algorithm
by measuring the goodness of its results. This can be
done by measuring certain characteristics in the results
or by simply comparing them with the ideal result.
These latter metrics, called empirical discrepancy met-
rics, are those used to measure the results provided by
the proposed technique. These metrics provide values
between 0 and 1. A value of 1 is given to a perfect fit
and a value of 0 to a completely unacceptable solution.

5.2 Experimental design

For optimum performance of the algorithm, it was
necessary to determine the values of the configuration
parameters that provide the best results. A classic ex-
perimental design [7] could have been developed but
due to the limited number of test strips available, a
specific procedure was carried out. The experimental
phase was divided into two tasks. The objective of
Task 1 was to obtain the best configuration for each
strip. As a single execution of the clustering algorithm
takes less than 5 seconds, an extensive search of the
search space of 5 dimensions formed by the set of con-
figuration parameters was feasible. Thus, an optimal
configuration for each of the test strips was obtained.
The objective of Task 2 was to determine how the met-
rics vary when each of the parameters are modified.
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Thus we were able to identify the most important pa-
rameters in the metric, and therefore determine which
must be fixed more precisely. To accomplish this task,
a new set of executions was performed. Each execu-
tion started with the optimal configuration determined
in Task 1 for each strip, varying each of the parame-
ters separately. Both tasks were performed using grid
technologies, due to the large computational cost they
require. Specifically, Condor [10] was used. The exper-
iments were performed by a grid of 30 heterogeneous
computers, which handles a total of 60 cores.

5.3 Analysis of results

After completing Task 1, the configuration that pro-
vides the best results for each strip was available, as
well as the values of their metrics. As the algorithm pa-
rameters are continuous values, they were discretized
for experimentation. Using Task 2, it was determined
that the most sensitive parameters are Min defs and
Max skips. In order to achieve better results, these
parameters were discretized with smaller steps.
Table 1 shows, for each strip, the best result obtained

with this technique compared with the results obtained
by Parsytec [8], the most widely used tool for defect
inspection in steel-making plants.

Table 1. Obtained Results

Strip Backtracking Parsytec
Strip 1 0.93 0.82
Strip 2 0.60 0.47
Strip 3 0.86 0.78
Strip 4 0.89 0.75
Strip 5 0.82 0.80
Strip 6 0.87 0.50
Strip 7 0.91 0.76
Strip 8 0.94 0.61
Strip 9 0.87 0.77
Strip 10 0.86 0.72
Strip 11 0.85 0.72
Strip 12 0.81 0.49
Strip 13 0.79 0.38
Strip 14 0.63 0.36
Strip 15 0.51 0.13
Strip 16 0.59 0.29
Strip 17 0.74 0.61
Strip 18 0.71 0.55

The best values for each parameter are different for
each strip. Using a geometric mean of the best val-
ues obtained for each strip, a set of parameter values
that provides good results for all strips was determined.
This has been done using a geometric mean of the best
values obtained for each strip. Thus, the parameter
values that could provide near-zero metric values for
some strips are avoided. For each parameter, the val-
ues obtained using this method are shown in Table 2.
Using this set of parameter values, the metric values

obtained for each strips are lower than those shown
in Table 1. However, the results are still better than
those obtained by Parsytec.
Parameters Max Skips and A Ratio must have very

Table 2. Optimal parameters

Parameter Value
Min Def 8
Max Skips 32

T Tol 42mm
L Ratio 5%
A Ratio 500%

large values due to the low accuracy of the data pro-
vided by the artificial vision system.

6 Conclusions

The work presented in this paper proposes a tech-
nique to detect periodical defects in hot steel strips.
Sparse matrices are used to store information effi-
ciently, and a vision-based backtracking algorithm is
proposed to defect periodical patterns in hot steel
strips. They can be detected using this algorithm in a
few seconds using a maximum of 20MB of memory.
This algorithm was optimally configured in order to

maximize the quality of its detection of periodical de-
fects. A set of test strips was used to test the proposed
technique. For all the strips tested the results achieved
are better than those obtained by a commercial tool
used worldwide.
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