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Abstract

This work presents an approach to quantify rota-
tions of spheric objects with a single camera. We apply
this method to objectively classify racket sports equip-
ment. Therefore, we observe the ball impact on a racket
and compare differences in rotations quantified prior to
and after the impact. Our approach combines motion
segmentation with tracking both the ball center and cor-
ners of the surface texture. A 2D warping of these cor-
ner positions reveals the rotation. We neither require a
motion model nor any user intervention. Experimental
results verify our approach and prove the feasibility of
our application scenario based on visual rotation quan-
tification.

1 Introduction

We present a visual method for quantifying rota-
tions of spheric objects aimed for the ball sports do-
main. Knowledge about ball rotation enables a range
of applications for sports where rotation plays a crucial
role like in table tennis, tennis, soccer, baseball, golf,
bowling, and billiard. Three envisioned application
domains in racket sports motivate us: Our primary
domain is racket equipment classification (Domain-1).
The amount of rotation (spin) a racket imparts on a
ball is a significant classification factor. Such clas-
sifications can be used in two ways: First, athletes
can make objective and deliberate decisions to pur-
chase equipment. Second, sports federations can clas-
sify illegal equipment which does not conform to the
rules. Domain-2 is training feedback analysis. Feed-
back based on ball spin is a useful pointer to improve
an athlete’s technique. Domain-3 are virtual replays
for television broadcasts of ball sports events. Show-
ing spectators significant ball spin characteristics in
virtual replays makes a sport more “tangible” and
thereby potentially arouses more interest in the au-
dience. This work focuses only on equipment classifi-
cation (Domain-1). However, the other two domains
are clear long-term goals even though their realization
requires a new approach.

Whereas numerous work (such as e.g. [1], [2], and [3])
has been done focused on ball tracking to obtain tra-
jectory paths less past work has dealt with ball spin
analysis. Previous work on spin analysis was done in
following sports domains: tennis [4], soccer [5], table
tennis [6], and baseball [7]. The authors of [4] mea-
sure the spin of tennis balls based on high-speed im-
age sequences but favor manual spin measurement over
computer vision methods because of higher accuracy.
Neilson et al. [5] measure the spin of a soccer ball.
Their results are based on a unique color pattern on
the ball surface where each 2D view of the ball iden-
tifies its 3D position. Our approach in contrast works
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with arbitrary surface features. Tamaki et al. [6] mea-
sure ball spin of table tennis balls. Their approach is
based on image registration in addition to depth infor-
mation from a manually fitted 3D sphere model. The
work of Boracchi et al. [8] examines spin by analyzing
blurred images. For the general case of a spinning and
translating ball they propose a semi-automatic user-
assisted approach. Both [6] and [8] require manual user
intervention whereas our approach is fully automatic.
Theobalt et al. [7] determine the spin of baseballs based
on multi-exposure stereo images. Their approach relies
on 3D depth data of predefined tracked color markers.
We instead only use a single camera and do not need
depth information.

Our contribution is a fully automated spin mea-
surement without user intervention. High-speed cam-
eras, as used in our acquisition setup, usually deliver
gray scale image data. Therefore, our method relies
solely on arbitrary gray scale images. We provide mea-
surement results within less than three seconds for 20
processed frames—sufficient for the racket classifica-
tion application. Further, our method is independent
from any motion model and works with uncalibrated,
monocular camera data. We point out that we only
measure spin with a rotational axis perpendicular to
the image plane—this renders our approach inappro-
priate for assessing spin in real game rallies. Although
ball trajectory analysis reveals additional discrimina-
tive data for racket classification we neglect it in this
paper and focus solely on spin measuring.

We explain our video data acquisition setting in Sec-
tion 2 followed by implemented method details in Sec-
tion 3. In Section 4 we present and discuss experimen-
tal results and compare them to existing approaches.
Finally, we revise our contribution and give an outlook
in Section 5.

2 Video Data Acquisition

We use rotating table tennis balls as a test environ-
ment. Compared to tennis, soccer, baseball, and golf
we can reproduce and verify results with less effort due
to a simpler data acquisition setting, depicted in Fig-
ure 1. A similar setting with a rigidly mounted racket
is described in [4]. We use an automatic ball feeder
(on the left in the figure) to obtain repeatable precon-
ditions. The feeder propels the balls with backspin
(3800 100 revolutions per minute (rpm)) towards the
rigidly mounted racket from a short distance (0.5 m)—
we capture the ball before and after impact on the
racket with a high-speed camera. The image plane is
parallel to the translational ball motion and the cam-
era observes the ball from 2 m distance (focal length
100 mm). We light the scene with three 1000 W flood-
lights to achieve enough contrast on the ball contour
and on the ball surface features for further processing.
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Figure 1. Video data acquisition setting

The main light direction of all three floodlights is posi-
tioned perpendicular to the image plane. The frame
rate is 1000 frames per second (fps), the exposure
time is ﬁs to minimize motion blur, and the cap-
tured image sequences have a resolution of 1280 x 512
pixels (landscape). Every certified table tennis ball
has a printed logo of the manufacturer on its surface.
This logo might be occluded in our acquisition setup.
Therefore, we augment the ball surface with additional
painted artificial features to ensure visible texture in
every captured frame.

3 Spin Calculation

Figure 2 depicts the spin calculation principle with
four superimposed ball images taken at four subse-
quent times of a sequence—the ball moves from left
to right as in Figure 1. The first two frames at the left
are taken prior to the ball impact whereas the last two
frames at the right are taken after the impact. The
spin calculation is based on tracking of ball surface
features—we mark a particular corner of such a tracked
feature with yellow dots for better visibility (this yel-
low dot only augments Figure 2 and does not exist on
the ball itself). Blue dashed lines mark the ball center
positions and solid red lines connect the tracked yellow
dot with the corresponding ball center. Two red lines
span a certain angle within an elapsed time (denoted
with « and § in Figure 2). The spin corresponding to
such spanned angles results from Eq. (1):

anglespannea  60s
360°°

(1)

The scale factor at the end ensures the unit of rpm—
we divide by 360° to obtain complete revolutions and
multiply with 60 seconds to obtain revolutions per
minute. The angle a = 137° in Figure 2 results from
the left two ball images (prior to the impact) within an
elapsed time of 6/1000s and equals a spin of 3806 rpm.
The angle 5 = 18° is calculated after the impact based
on the right two ball images within 20/1000s, so the
spin equals to 150 rpm.

Before we can apply Eq. (1) for spin calculation, we
need to process the image sequences. Our processing
pipeline consists of the following five steps:

Step 1: Segmenting ball from background: To do
this, we learn a background model based on frames
before a ball becomes visible in the scene. During
this learning phase we observe a certain intensity range
for each image pixel. After the learning phase a pixel
is considered as foreground when this pixel’s intensity
value is outside the learned intensity range. This seg-
mentation method is implemented in OpenC'V.

Spin = —
mmeelapsed
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angle B = 18°
time = 20/1000 s
spin = 150 rpm

angle a = 137°
time = 6/1000 s
spin = 3806 rpm

(a)

Figure 3. Circle fitting to ball contour

Step 2: Determining center position: First, we fit
a bounding box around the segmented ball contour.
Next, we fit a circle into this bounding box—the cir-
cle center corresponds to the ball center. Figure 3a
shows a segmented input image with a superimposed
fitted circle and the ball center. Figure 3b highlights
a problem: If the ball surface is not lit uniformly, as
in our case, the contrast varies between the imaged
sphere contour and the background. This hinders ac-
curate circle fitting and center finding (compare the
determined smaller circle and the true larger circle).

Step 3: Identifying corners within our region of in-
terest (ball contour): According to the criterion for
“good” corners in [9] we identify corners where both
eigenvalues of the second moment matrix are above a
certain threshold. We set the threshold to 80% of the
best found corner’s lower eigenvalue. This threshold
has been evaluated empirically and ensures “good cor-
ner quality”.

Step 4: Tracking identified corners between consec-
utive frames: We apply the Kanade-Lucas-Tomasi al-
gorithm [10] for tracking corresponding corners.

Step 5: Calculating a rotation angle by 2D warp-
ing of surface feature positions: Figure 4 explains the
calculation of the rotation angle based on the (inner)
vector product. Consider the two circles as abstracted
ball images of Figure 2 with a black and a white square
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Figure 4. Angle calculation

Figure 5. Corner tracking (synthetic images)

representing two surface features. These features are
connected by straight edges (dashed lines) and we as-
sume the features retain their spatial relation on the
ball surface (rigid body assumption). We denote the
direction from the black to the white square in the left
ball image as vector ¢ and the direction from the black
to the white square in the right ball image as vector
W (U, € R?). Based on the inner vector product, the
angle ¢ is calculated according to Eq. (2):

7@ )
1511 [l /-

After we obtained the rotation angle, we can apply
Eq. (1) to calculate the corresponding spin.

¢ = arccos ( 2)

4 Results and Comparison

Obtaining ground truth data from real image se-
quences is a tedious task. Therefore, we generated syn-
thetic image sequences where ground truth is known.
Figure 5 visualizes two snapshots of an analyzed syn-
thetic image sequence. In Figure 5a two corners of
the square-like region are automatically chosen and
tracked—the magenta line connects the corners in the
current frame whereas the green line shows the rela-
tion of these corners in the previous frame (thin blue
lines mark corresponding corners). The top of the im-
age contains the calculated corresponding spin value.
In comparison thereto, in Figure 5b three corner corre-
spondences are tracked and therefore we can calculate
three spin values. Ideally, all three values should be
the same, the differences between them indicate inac-
curacies in the location of corresponding corners.

Figure 6 shows the calculated spins of the synthetic
sequence. Ground truth spin is 3667 rpm prior to im-
pact and 417 rpm after impact, marked with blue lines.
Measured values are marked with magenta circles. The
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Figure 6. Results of synthetic sequence

Figure 7. Corner tracking (real images)

spin value zero at frame 15 is due to the simulated im-
pact with momentarily zero motion. The values in this
diagram represent average values calculated over the
number of tracked corner correspondences—with refer-
ence to Figure 5b this is an average over three values.
Of course this simple averaging includes also outliers
but we want to show the mean error variation. Disre-
garding outliers, the mean measurement error prior to
impact is -8% and after impact +3%.

Figure 7 depicts two snapshots of an analyzed real
image sequence—in part a two corners are tracked,
whereas in part b three corners are tracked (current
corner positions are magenta, previous positions are
green). Between Figure 7 and Figure 5 we notice the
apparently less smooth ball contour shapes of the real
snapshots. This results from varying contrast between
the projected real ball contour and the background.

Figure 8 shows the calculated spins of the real se-
quence. We obtain the ground truth by manually mea-
suring angle differences between corresponding corners
in the sequence on a computer display. The spin prior
to impact is 3750 rpm and after impact 500 rpm. Dis-
regarding outliers, the mean measurement error prior
to impact is -7% and after impact -3%—so absolute
errors of synthetic and real sequences are comparable.

Remark: Both Figures 6 and 8 show outliers at frame
numbers 9 and 12 respectively. At these positions only
one corner instead of at least two sufficiently “good”
corners could be revealed. However, to obtain a spin
value for each frame, we replaced one (non-existing)
corner position by the ball center position. Spin cal-
culation based on the center position and one surface
corner is not as robust as the proposed method with
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Figure 8. Results of real sequence
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Figure 9. Spin responses of five different rackets

at least two surface corners—the center position can-
not be determined as accurately as a corner (compare
Figure 3).

We captured sequences with five different rackets
with results similar to Figure 6 and Figure 8 (these
measurements are not shown in detail). We call the
measured spin of a racket after impact its spin re-
sponse to a certain spin before impact. Measured spin
responses revealed an average range per sequence be-
tween 200 and 1250 rpm depending on the racket. Fig-
ure 9 illustrates these measurements where racket no. 3
corresponds to results of Figure 8 after impact. In the
case of these five rackets the spin response is discrim-
inative enough to uniquely distinguish between them.

To reveal our strengths and limitations we compare
our results with two approaches ([8], [7]): The blur ap-
proach of Boracchi et al. [8] requires a feature to have
an observed angle displacement of at least 3.6°—our
method does not have a lower bound. In [8] the au-
thors assessed only cases without translation where the
mean error was 3 - 11% for a spin range 833 - 1666 rpm.
In contrast to them we cope with additionally super-
imposed translations. Theobalt et al. [7] state an error
of 0.4 - 2.5% for spins of 1258 - 1623 rpm for their
stereo based approach. In contrast to both approaches
we cope with a larger spin range between 0 - 3750 rpm.
On the other hand our mean error magnitude can in-
crease to about 8%.

5 Conclusion and Outlook

We have shown a motion analysis approach focused
on the measurement of ball spin. Experiments proved
different spin responses on different rackets which
makes this method’s results feasible for racket classi-

258

fication based on spin measurements. A sequence of
20 captured frames is sufficient for a significant racket
classification. The execution time for processing 20
frames is about 3 seconds (run on an Intel Core i7
L620, 2 GHz processor)—this delay is acceptable for an
application like on site classification of illegal rackets
during sport events. However, the same delay might
be an upper limit for application domains like training
feedback and virtual replays for sports broadcasts.
We identify two major future steps:

e Most importantly, we strive for quantifying rota-
tion without restrictions on the spin axis position.
Hence, to enable other long-term application do-
mains such as training feedback analysis and vir-
tual replays, the development of a new approach
is crucial.

e Our method should be sufficiently robust to mea-
sure spin based on any two subsequent frames. We
will successively challenge our method by decreas-
ing the number of artificial surface features.
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