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Abstract

In this paper, a new camera based lumber strength
classification solution using solely knot features is pre-
sented. Two alternative classifiers, k-NN and SVM,
are applied to classifing pinewood boards based on
their breaking strength. Features for classification are
formed using knot properties, which are extracted from
four sides of the board using machine vision algorithms.
Exzxtracted properties include size, x,y,z-coordinates and
the type of knot. These properties are used as such as
features. They are also used to form different combina-
tion features like length or volume of the knot. In ex-
periments, ground truth breaking strength of the boards
was determined using a three point bending test. Our
evaluation shows that when knots are present it is pos-
sible to classify pinewood boards with over 70% accu-
racy using a combination of knot based features.

1 Introduction

Machine vision has been widely employed in many
quality control applications in the wood products in-
dustry. As vision systems have become more capa-
ble with advances in sensor, microprocessor, and light-
ing technologies, solutions have emerged that perform
many wood inspection tasks automatically. Since the
cameras are already available in production lines, there
is an attractive opportunity for utilizing the informa-
tion provided by images to also estimate the lumber
strength grade.

Strength grading is needed to ensure lumber is
strong enough for structural applications. The abil-
ity of lumber to resist loads depends on several factors
[9]. One of the single most important factors is knots
since they distort the grain patterns of wood, alter-
ing the grain orientation. Changes in orientation can
cause severe reduction in strength properties since load
resisting capabilities in a radial or tangential direction
can be tens of times lower than in the longitudinal
direction. Therefore, knots can be directly used to es-
timate the strength of the lumber [6].

Conventionally, mechanical stress grading machines
have been used for bending lumber to measure the
strength grade. Obviously, alternative approaches
for obtaining this information without physical con-
tact with the wood have been sought. Existing non-
destructive methods utilize x-ray [11], microwave [7]
or ultrasonic [8] imaging. A common charasteristic for
these techniques is that the equipment used is expen-
sive compared to cameras. Camera based systems can
also utilize existing quality inspection equipment that
is already present in many wood processing facilities.

Not much research has been done regarding non-
destructive camera based strength grading of sawn
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wood. One proposed solution is to use grain based
features for strength estimation [10]. The test mate-
rial in their work was sawn near the core of the stem
so no large knots were present. Therefore, knots did
not introduce major grain distortions and the usage of
knot based features did not provide any improvement
over grain angles.

In this paper, we present a new camera based lumber
strength classification solution using solely knot data
available in images. Our work shows that a feature
as simple as the size of the knot alone can have the
same coefficient of determination (0.41) as an xray-
system coupled with an FEM prosessor presented in
[11]. Compared to a multi-sensor lumber classifier sys-
tem [1], the proposed k-NN classifier performs equally
well when only one type of wood is being classified.

The actual extraction of knot data from images was
not in the scope of this research. Many existing vi-
sual quality control systems used in the wood industry
alredy produce the basic knot properties like location
and size. In this paper we focus on the use of those
readily available features.

2 Lumber strength grading

In our contribution, we propose two alternative so-
lutions to classifing boards to three different strength
classes, based on knot features. In the first approach,
a k-NN classifier is applied to these features. The sec-
ond technique is to utilize an SVM classifier on those
same features. Knot data used in feature vectors in
classifiers is extracted from images captured from four
sides of the board using machine vision algorithms.

2.1 Features

As mentioned earlier, all features used for the clas-
sification were based on knot properties. The main
focus of this work was to find a combination of knot at-
tributes that correlate best with the breaking strength
of the board. Figure 1 illustrates how wood grain be-
haves around live knots. Changes in the direction are
notable.

The upper two boards and the lower two boards in
Figure 2 have similar knot patterns if the y-coordinate
and the size of the knot are used as features for
strength grading. These two features are considered
usually as the most important strength affecting
qualities in lumber. Still, the upper boards have
almost a 10 MPa difference in breaking strength, so
other features also need to be considered. On the
other hand, the breaking strength of the lower two
boards is exactly the same, so in some situations those
two features alone can work exceptionally well.



Figure 1. Grain behavior around a knot.

Figure 2. Two board pairs with similar knot pat-
terns.

With the data extracted from the images, the fol-
lowing features can be used:

Size of knot (larger end, smaller end)

Average size of knot

x,y,z-coordinates of knot (larger end, smaller end)
yz-angle between knot ends

Length of knot

Volume of knot

Sum of the size of the bigger end of the knot and
knot length

e Strength reduction factor (SRF)

e Type of knot

To form a feature vector, knots are first ordered us-
ing an ordering criteria. This criteria decides which
knots are the most significant and need to be included
in the vector. The Size of the larger end of the knot,
the average size of the knot, the volume of the knot and
the strength reduction factor were used as the ordering
criteria.

Strength reduction factor a is special feature formed
by using the y,z-coordinates of the knot, the size of
larger end of knot and the knot length. It is loosely
based on the critical knot concept in Foley’s doctoral
thesis [6].

After the knots have been sorted using the selected
ordering criteria, feature vector F' can be formed. The
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Vector is defined as

F ={fi1, fi2, f13, s fims fo1, fo2, fo3, s fum} (1)

where n is the number of features and m is the num-
ber of the most significant knots taken into considera-
tion.

According to the National grading rule for softwood
dimension lumber interpretations [2], when visually in-
specting lumber the size of knots must be taken into
account from a length of six inches, and the sum of sizes
may not exceed the largest allowed knot. In Table 1
r2-values between some features and breaking strength
of test samples are listed. Summation of features over
a six inch distance was also tested with these features.
This improved r2-values for volume and SRF but not
for size. Summation means the maximum sum of se-
lected feature taking all knots into consideration. A
Stepsize of 20 mm was used while moving the six inch
window across the board. Values for features without
summation were calculated using two knots and the
size of the larger end as ordering criteria.

| Feature | r*-value |
Knot size (larger end) 0.41
Knot size (larger end, six inch sum) 0.40
Knot size (average) 0.40
Knot size (average, six inch sum) 0.38
Knot volume 0.32
Knot volume (six inch sum) 0.33
SRF 0.41
SRF (six inch sum) 0.48

Table 1. Best r2-values for some of the features.

2.2 k-NN Classifier

The first classifier used in our system is based on
the k& Nearest Neighbors (k-NN) rule. This decision
rule has been extensively used in pattern recognition
systems because of its good performance and simple
algorithm. In k-NN, unknown samples are classified
by counting the labels of the k-closest training sam-
ples (prototypes) according to some similarity measure
such as Euclidean distance [5]. This rule has nice prop-
erties: 1) the recognition error rate approaches twice
the Bayesian error rate as the number of prototypes
and the value of k becomes large, 2) the classifier can
still be designed even if training samples are few and 3)
it can be implemented when classes overlap with each
other [5].

We use the easiest implementation of the k-NN rule
when the Euclidean distance between the sample and
each prototype in the training set has been computed,
and then the sample is classified into the majority class
of its nearest neighbors. This exhaustive search is suit-
able for our method due to the small number of train-
ing samples.

The best feature vectors for the k-NN method were
determined by first testing all the possible combina-
tions of features for every ordering feature using Leave-
One-Out-Cross-Validation to calculate the classifica-
tion accuracy. At this stage, the features were scaled
to [0,1] and given weight of 0 or 1.



When the best combination was found, an iterative
search to find the best possible weights for the selected
features was conducted. At this stage, the features
were also scaled to [0,1] first, but the weight range was
changed to [0,5] and the step size was set to 0.1. The
final vector then was a product of feature vector the
F and the coefficient vector A, Fyina = F x A. The
two best feature vectors were sought for every ordering
feature, one for the best classification accuracy and one
for the best coefficient of determination among the k
nearest neighbors.

Classification accuracy for all four ordering criteria
was consistent, and performance with the best found
feature vectors varied only by a few percent. The best
results were achieved by using the size of the bigger end
of the knot as ordering criteria, taking the two most
significant knots in the calculations and using five for
the value of k, giving an almost 72 percent correct
classification.

2.3 SVM

Support Vector Machine (SVM) classifiers [4] have
been successfully employed for various challenging pat-
tern recognition problems. The SVM algorithm tries to
find a separating hyperplane that optimally splits the
training data set. Bounds between these data classes
and the hyperplane are called Support Vectors. In
many cases, the input space is mapped onto a higher
dimensional space using kernel functions to perform a
nonlinear separation.

In this work, SVM classification was performed using
the LibSVM software package [3]. The best results
were achieved by using the RBF kernel. To find the
best features for the SVM classifier, the data was split
into two groups: training samples and test samples.
The classifier was optimized by finding the best C' and
~v parameters. This procedure was run repeatedly for
different feature vectors, randomly splitting samples
into two groups each time. The feature vector with
the best mean accuracy was chosen. As with k-NN
classification, the best results were achieved using the
two most significant knots.

3 Experiments

Test material available for this research consisted of
194 pine (pinus sylvestris) boards with dimensions of
3900 x 100 x 50 mm sawn near the stem core. The
breaking limit was measured by bending the boards
in a three-point bending machine until the point of
breakdown. The limit was chosen to be the maximun
amount of force directed to the board.

The knot count in the tested boards was 1-10 live
and/or dead knots. Categorization of knots to live and
or dead was done by the researchers themselves. This
leaves a possibility of human error. The largest single
knot in the test material was 44.68 mm in diameter.

The material was divided to three classes based on
the breaking limit. Breaking limits for classes were
lower than 29 MPa for Class I, 29 - 43 MPa for Class
IT and greater than 43 MPa for Class III. By choos-
ing class limits in this way, the distribution of boards
among the three classes was almost equal: 60 samples
in Class I, 67 samples in Class IT and 64 samples in
Class III.
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The type of the knot proved to be highly critical
factor for classification. If live and dead knots were
treated in the same way, the classification accuracy
dropped by 10-20%. We found that a good way of in-
creasing classification performance was to multiply the
size of the dead knots by a factor of less than one. This
way they had less impact than the live knots. The best
value of this factor was dependant on the ordering cri-
teria used. This result is consistent with the theory on
how knots affect the grain flow patterns around them.
Grains grow into live knots altering their orientation
by as much as 90 degrees, whereas dead knots are en-
cased by the grains, and grain flow distortions remain
small. Grain behavior around a knot is illustrated in
Figure 1.

The volume of the knot was the most common sin-
gle feature that appeared in the best feature vectors
found. The size of the knot (larger end or average
size) was also included in many of the best vectors
found. The y-coordinate of the larger end of the knot
was not included in any of the best vectors found, but
the y-coordinate of the smaller end was in almost ev-
eryone one. Test samples are sawn near the stem core,
so their smaller ends are all very similar in size and y-
coordinate. The reason why the y-coordinate of larger
end was not selected to best features could be result
of not dividing y-coordinate to three possible classes:
1) larger side is at top of the board 2) larger side is
on either side of the board 3) larger side is at the bot-
tom of the board. When the larger side of the knot
is at the top or at the bottom, the z-coordinate needs
to be taken into consideration. The fact that SRF
was present in many of the best vectors, and SRF is
formed using y,z-coordinates, among other things, also
supports this theory.

One important thing to note in this work is that the
moisture content was the same in all of the boards. If
there would have been major variations between the
moisture content of the boards, the results for classifi-
cation accuracy would have undoubtedly been lower.

3.1 k-NN

Table 2 presents the best classification accuracies
achieved for the four different ordering criteria using
a k-NN classifier. The r2-value in the table is calcu-
lated between the measured breaking strength and a
weighted sum of k = 5 nearest neighbors, using 1/D
as weight, where D is the Euclidean distance between
the classified sample and its neighbor. The feature vec-
tor F that yielded the best classification accuracy was

FkNN = {favgl; fa'ug2; fysl; fys2; flenlvflen%

footts fuot2, fsits fsi2, forf1s fsrr2}  (2)

where fq.4 is the average size of the knot, fy, is
the y-coordinate of the smaller end of the knot, f,
is length of the knot, f,,; is volume of the knot, fy is
sum of the size of the bigger end of the knot, and the
knot length, and f,,.¢ is the strength reduction factor.

With uneven class distribution, the classification ac-
curacy was significantly lower, being only 62%. Class
limits in this case were chosen to be 24 and 40 MPa,
which are some of the typical limits used in wood the
industry for lumber strength classification instead of



29 and 43 MPa. The sample distribution was 32 sam-
ples in Class I, 78 samples in Class II and 81 samples
in Class III.

| Ordering feature | Accuracy % | r*-value ]

Knot size (larger end) 71.73 0.51
Knot size (average) 70.68 0.50
Knot volume 70.16 0.51
SRF 70.16 0.52

Table 2. k-NN classification results for even class
distribution.

3.2 SVM

The best mean accuracy with SVM classification was
achieved with the same feature vector and ordering
criteria as with the k-NN.

In Figure 3 is presented 100 SVM classification test
runs using the best found vector. The mean value of
the optimized accuracy is 68.5%, the minimum value is
56.6% and the maximum value is 83.0% in classification
accuracy. This suggests that using SVM classification
the overall performance is similar compared to k-NN
classification.

In some of the tests, classification accuracy was re-
markably lower than with the k-NN classifier. This is
probably due to randomly selecting most of samples
from one of the classes to be the test samples, and the
samples from the other two classes were left as training
samples.
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Figure 3. 100 SVM tests using the best features
found.

With uneven class distribution, the mean value for
optimized accuracy was 68.7%, the minimum value was
55.4% and the maximum value was 81.5% in classifica-
tion accuracy. Unlike with the k-NN, the mean classi-
fication accuracy did not decrease despite the uneven
sample distribution among classes.

4 Conclusions

The test results show that knot based features can be
used to classify pinewood boards with good accuracy
when the number of different classes is small. The two
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largest knots were the most critical for classification
purposes in this work.

The SVM classifier seems to outperform the k-NN
classifier due to the fact that it works much better
in situations where the class distribution of available
samples is uneven. When sample distribution between
classes is even the k-NN has about 72% and SVM has
about 68% classification accuracy. Both are also com-
putationally low cost to implement, even in real-time
systems. Much work remains to be done to find the
best training set for SVM without overfitting the sys-
tem.

It must,however, be kept in mind that only one type
of wood was tested, and the data available for testing
contained under 200 samples. Knot based classification
may not be suitable for all wood types, or for boards
that contain only very small knots. Similar features
may also not work for every wood type. Nevertheless,
for existing camera based lumber inspection systems,
automated visual strength classification offers a poten-
tial field of development in the future. One possible
improvement could be to combine knot and grain data
to be used in the same classifier.
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