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Abstract 

This paper proposes an automatic visual inspection 
scheme with phase identification of microdrill bits in 
printed circuit board (PCB) production. Our method 
mainly includes two procedures: firstly the statistical 
shape models of microdrill bit is built to get the shape 
subspace, and then the phase identification is performed 
in the shape subspace using some pattern recognition 
techniques. In this paper, we compared the performance 
of two statistical model methods, principal component 
analysis (PCA) and linear discriminate analysis (LDA) 
together with three classifiers, support vector machines 
(SVMs), neural networks (NNs) and k-nearest neighbors 
(kNN) respectively for phase identification of microdrill 
bits. The experimental results demonstrate that using low 
enlargement and resolution microdrill bit images the 
proposed method can measure up to high inspection ac-
curacy, and provide an conclusion that the highest 
identification rates were obtained by PCA-SVMs. 

1. Introduction 

With the rapid growth of Printed Circuit Board (PCB) 
manufacturing industry, automatic inspection of micro-
drill bits has been more and more important. A worn-out 
microdrill damages the quality of PCB surface finish and 
the dimensions of the drilled hole [1]. Since the increasing 
circuit density brings about continuing microminiaturiza-
tion of drill bits, the inspection has come into an 
enormous challenge. In the face of the microdrill bits with 
a diameter of just one-tenth or even one-hundredth mil-
limeter, it is obviously impossible to satisfy the 
requirement by the naked eye. One solution is that the 
quality auditors work with micrometers and microscopes. 
Such kind of manual inspection is time-consuming, sub-
jective and costly [3], thus, it is difficult to achieve the 
required inspection. Another solution, called automatic 
visual inspection, has been proved a promising way. It it is 
time-saving, objective and non-contact [3, 4,]. 

A lot of work has been done on the automatic visual 
inspection of microdrill bits by machine vision tech-
niques. Some methods for geometric defect inspection 
have been presented by the authors in [2, 5, 6]. All these 
methods work in the similar scheme. Firstly edge detec-
tion or boundary following technique was employed to 
get the edge of cutting plane from a microdrill bit image, 
and then corner detection and curve fitting were imple-
mented to measure some geometric quantities of the 
cutting planeOn the other hand, a scheme for flank wear 
measurement of cutting plane was reported in [1]. Using 

a set of pair points located on the raising edge and the 
falling edge, three quantities, flank wear area, average 
flank wear height, and maximum wear height, were cal-
culated to measure the flank wear for tool life evaluation. 

All the methods mentioned above adopt the strategy of 
“one-to-one” comparison. To guarantee measurement 
accuracy, the inspection instrument requires large en-
largement lens (more than 300 times) and high resolution 
CCD (more than 640 by 480) [1, 2, 5, 6], which increas-
es the cost of both system hardware and system 
computation. This paper in further develops a novel me-
thod that relatively lowers the requirement for imaging 
equipment of inspection instrument. The proposed me-
thod adopts the phases of microdrill bits lifecycle as an 
index for inspection. Generally during a microdrill bit 
lifecycle in PCB production there are six important 
phases which are denoted as N, ND, K1, K1D, K2 and 
K2D (examples are shown in Fig. 1). During inspection, 
if these phases can be identified, we can easily confirm 
its condition and evaluate the tool life. Thus, the inspec-
tion can be viewed as a six-class classification problem 
to identify the phases of microdrill bits. The basic idea of 
the proposed method is that using a set of training sam-
ples of microdrill bits, the statistical shape models are 
built first, and phase identification of microdrill bits fol-
lows in the shape subspace using a classifier. This paper 
demonstrates how the scheme works for phase identifi-
cation and investigates the performance of two statistical 
model methods, principle component analysis (PCA) [8] 
and linear discriminate analysis (LDA) [9] together with 
three classifiers, support vector machines (SVMs) [10], 
neural networks (NNs) [11] and k-nearest neighbors 
(kNN) [11] respectively for phase identification of mi-
crodrill bits. 

 

Figure 1. 0.5mm-diameter microdrill bit images of 
the six phases. (a) N, (b) ND, (c) K1, (d) K1D, (e) 
K2, (e). K2D, (f) K2. 
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2. Overview of the Visual Inspection 
Scheme  

The flowchart of our proposed scheme for phase iden-
tification of microdrill bits, which consists of training 
stage and test stage, is depicted in Fig. 2. Training stage 
includes image acquisition and statistical shape models 
construction. Images of microdrill bits are acquired by a 
special imaging system, and then they are used as training 
set to build the statistical shape models by PCA or LDA. 
For a test image, we project the shape of the microdrill bit 
to the shape subspace that we trained to obtain its model 
parameters. These parameters are taken as input of clas-
sifiers in the shape subspace for phase identification. 

2.1. Image Acquisition 
The image is captured by the CCD camera with a LED 

illumination system in frontal view of the drill bit in the 
scanner. For intuitional instruction, in the right side we 
give an example of the acquired image. The image is 
transformed into an eight-bit grayscale format (as shown 
in Fig. 1) and saved to the memory of the computer. Each 
digital image is 256 by 340 pixels in size. Both the mag-
nification of lens and the resolution of CCD are much 
lower than those (mentioned above) commonly used in 
research and practice. The intensity value of each pixel 
ranges from 0 to 255. For the originally acquired images, 
an image thresholding according to histogram is imple-
mented to extract cutting plane from the background. 
Then the cutting plane is aligned to horizontal direction. 

2.2. Automatic Statistical Shape Models Con-
struction 

A) Automatic cutting plane land marking 
For one of the cutting planes, as shown in Fig. 3 (a), the 

minimum quadrangle that can enclose the facet is deter-
mined first. The oblique bottom side of the quadrangle 
locates on the chisel edge, and the top side horizontally 
passes through the top of the facet. The right and left sides 
are a pair of vertical lines through the corresponding 
boundaries of the facet, respectively.  

As shown in Fig. 3 (b), in the quadrangle mentioned 
above, the angular bisectors of the upper right vertex an-
gle and the lower left vertex angle are termed as B1 and 
B3. The line, B2, joins the two points, the upper left vertex 
and the lower right vertex. Then the intersecting points of 
B1, B2 and B3 with the boundary of the cutting plane are 
defined as the basic points, P1, P2 and P3, respectively. 
The lower right vertex is defined as the basic point P4. 

As shown in Fig. 3 (a), the intersecting points, of a set 
of lines that divide the angle α equally and the boundary 
of the cutting plane, are selected as the land marks be-
tween P1 and P2. The landmarks between P1 and P4 are 
defined by the vertically equal divisions of the boundary 
segment P1P4, and the landmarks on the boundaries P2P3 
and P3P4 are defined in the same approach.  
B) Statistical analysis 

Given a shape of the cutting plane, it can be 
represented as a vector 

  � �1 1, , , , , 1, ,T
i m mx y x y i n� �s �, , , 1,� ,T

m my �, , ,, ,�m, m n        (1) 

where (xi, yi) denotes the location of a landmark, m is the 
number of landmarks and n is the number of training 
examples. The shape model is then 

 ,�s = s Pb                    (2) 
where s  is the mean shape, P = [v1|v2|…|vt], is the or-
thonormal transformation matrix which forms the shape 
subspace, and b is a vector of weights, called as model 
parameters. For a test drill bit shape stest, its model para-
meters is given by projecting it onto the shape subspace as 

 � �.T
test test� �b P s s              (3) 

In this paper, two popular methods, PCA and LDA are 
applied for dimensionality reduction and shape model 
construction. 
i. PCA, to find a lower dimensional subspace corres-

 

Figure 2.  Flowchart of the phase indemnifica-
tion of microdrill bits. 
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ponding to the maximum variance direction of origi-
nal multidimensional data space[12]. In PCA, the 
basis vectors are defined as eigenvectors of scatter 
matrix ΦΦT. Φ is the normalized shape matrix 

[( ) ( )].m� � �1Φ s s s s( m(           (4) 
The orthonormal transformation matrix P is formed 
by the basis vectors corresponding to the t largest ei-
genvalues of ΦΦT. The principle to set t is 
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where γ is a threshold that defines the proportion of 
the total variation to be explained. 

ii. LDA, also known as Fisher Discriminate Analysis 
(FDA), the same with PCA is also an orthogonal li-
near transformation. However, the difference from 
PCA is that LDA searches a lower dimensional sub-
space that best discriminates among classes [9], that 
is to say P is decided to make the ratio of the be-
tween-class scatter and the within-class scatter is 
maximized. The between-class scatter matrix and 
within-class scatter matrix are defined as 
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where c is the total class number, Ni is the training 
example number of class i, and is is the mean vector 
of class i. Thus, P is chosen to maximize the ratio 
det(SB)/det(SW), which contains a set of generalized 
eigenvectors of SB and SW corresponding to the t 
largest eigenvalues, i.e., 

,       1,2, .B i i W i i t	� �S p S p .t       (8) 
where pi is a generalized eigenvector corresponding 
to the eigenvalue λi. An upper bound on t is c-1, be-
cause there are at most c-1 nonzero generalized 
eigenvectors.  

2.3. Phase Identification of Microdrill Bits 
In our methods, the phase identification is implemented 

in the shape subspaces with model parameters, and SVMs 
are selected as the classifier. For benchmark comparisons 
with other classification methods, experiments were also 
performed with NN and kNN. 

SVMs were originally proposed by Vapnik in 1995, and 
have been widely used in pattern classification applica-
tions [10]. It has been shown that SVMs can yield superior 
performance than traditional techniques for its higher abil-
ity in generalization [7]. In the following, we will give a 
brief introduction to SVMs. 

SVMs belong to the class of maximum margin clas-
sifiers [10, 12]. From a training dataset, a binary classifier 
is constructed to perform pattern recognition between two 
classes. The purpose is to find a decision surface so that 
the margin of the nearest points which are termed as 
support vectors (SVs) in the training set is maximized.  
This decision surface is called the optimal separating 

hyperplane (OSH).  Given a training dataset {xi, yi}, i = 1, 
2,… l,  �� ∈ ℝ� , in two classes, and the label

 �1, 1 ,iy � � � the OSH has the form 
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where b is bias, and αi are coefficients which can be 
determined by solving a quadratic programming problem: 

minimize 
, 1 1
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2
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where Q is an l by l semidefined matrix that depends on 
the training dataset and the SVMs function form, Qij = 
yiyj(xi∙xj). C is the upper bound, a user specified regula-
rization perimeter, and a larger C means a higher penalty 
to the training errors. 

However, there are a lot of non-separable cases for li-
near classifier in general pattern recognition problems, 
and it is also difficult to obtain a nonlinear decision func-
tion. A hopeful solution is to map the input dataset to a 
higher-dimensional space called feature space where the 
OSH can be found for linear separation. The feature space 
should be a dot product space, that is to say, by the map-
ping Φ, the dot production of two points Φ(x)∙Φ(y) in the 
feature space can be described by a kernel function K(x, 
y): 

 � � � � � �, .K � � ��x y x y           (12) 
According to Mercer’s theorem [13], given a symme-

tric positive kernel K, there exists a mapping Φ that 
satisfies equation (13). Thereby we can construct a non-
linear SVM without treating the mapping Φ explicitly. 
The kernel replaces the inner production, then the deci-
sion function becomes 

 � � � �
1

sgn .
l

i i i
i

f x y K b�
�

� �� � �� �
� �
� x x

    
(13) 

The solutions of αi are still a quadratic programming 
problem. 

In this work we adopted an important family of kernel 
functions, Gaussian radial basis function (RBF) as fol-
lows 

 � � 2
2

1, exp .
2RBFK
�

� �� � �� �
� �

x y x y
    

(14) 

3. Experimental Results 

Forty sets of 0.5 mm-diameter drill bits are used for 
evaluation. The shape of a cutting plane is represented by 
70 labeled points. Each set involves six samples corres-
ponding to six phases. Totally we have 240 samples. The 
experiments are implemented in a leave-one-out strategy. 
Each time one set is left for test, and the other thirty nine 
sets are used as training sets. The experiments are re-
peated 40 times so that each set can be used as new test 
sample for evaluation.  

We compared the mix identification rates of the three 
classifiers in the five cases (with different principal com-
ponents number) in Fig. 4. The best identification rates of 

orthonormal transformation

orthogonal li-
near transformation.
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NNs and kNN are lower than that of SVMs. The overall 
best identification rate is achieved by SVMs with 30 
components. Fig. 5 shows the mix identification rates of 
the three classifiers on the five conditions (with different 
dimension) by LDA. We found that the overall best iden-
tification rate is achieved by SVMs, which is the same 
with that using PCA for statistical shape model construc-
tion. Here, it can be said that in both the two shape 
subspaces, the best identification rate is achieved by 
SVMs. Fig. 6 shows the identification rate comparison of 
the two approaches. 

It must be noted that the computation cost of training is 
high, but the test is fast. As to PCA-SVMs with 30 prin-
cipal components, the training processing (include the 

training stage in shape model construction and the training 
stage in SVMs) time is 238 s and the test processing time 
is 0.96 s. So it is a real time inspection scheme. 

4. Conclusion 

An automatic visual inspection scheme with phase 
identification of microdrill bits in PCB production was 
presented. We proposed a new index, phase of lifecycle 
for microdrill bits inspection. Two methods (PCA and 
LDA) of statistical shape model construction together with 
three classifiers (SVMs, NNs and kNN) are implemented. 
The proposed scheme can identify the phase of a micro-
drill bit within 1s, which makes it practically in PCB 
production. 
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Figure 4. Mix identification rate using PCA for sta-
tistical shape construction with three classifiers, 
SVMs, NNs and kNN. 

 

Figure 5. Mix identification rate using LDA for sta-
tistical shape construction with three classifiers, 
SVMs, NNs and kNN. 

Figure 6. Identification rates using PCA-SVMs and 
LDA-SVMs 
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