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Abstract

This paper presents a joint imperfection detection
method for on-line process monitoring of laser braz-
ing processes. The method uses images from two spec-
tral ranges and fuses their features with the scores of
the separately calculated log-likelihood ratios to decide
whether the currently generated part of a joint contains
an imperfection or not. To avoid unconfident classifi-
cations, a decision reject is implemented. Furthermore,
the classifier can be adapted to different quality require-
ments.

1 Introduction

Laser brazing is a well established joining process
in the automotive industry. Especially in visible re-
gions of a vehicle, such as the boot lid, the quality
requirements for the brazed joints are very high. Con-
ventionally the quality of a joint is inspected in several
test stations after the brazing process. Recently, there
have been attempts to combine all testing stations in
one system which allows to measure the quality dur-
ing the brazing process [1–4]. This principle of on-line
quality control monitoring is already known from the
application of laser welding where several approaches
already exist [5, 6].
This paper focuses on the on-line detection of imper-

fections of the categories pores, joint interrupts and
wetting failures. These are the most critical imper-
fections and are not only affecting the appearance of
the joint but also influencing the quality characteris-
tics such as stability and leak tightness of the joint
significantly.
The following section gives a quick overview over the

experimental setup used for the on-line monitoring of
laser brazing. Section 3 describes the feature extrac-
tion method which is used by the classifier presented
in Section 4. Achieved results are discussed in Section
5, and we give conclusions in Section 6.

2 Experimental Setup

The experimental setup is shown in Figure 1. Two
cameras are integrated coaxially in the laserbeam path
of a laser optic. The cameras provide synchronous im-
ages in two spectral ranges: visual (VIS) and near-
infrared (NIR). They allow a detailed observation of
the process with up to 300 frames/s per camera with
a resolution of 1024× 440 pixels (8 bit) in the VIS and
320×148 pixels (14 bit) in the NIR image. The optical
setup gives a process resolution of about 8 μm/pixel in
the VIS and 26 μm /pixel in the NIR image. Figure 2
shows an example of the images from these two cam-
eras. This figure also shows a picture of a resulting

Figure 1. Experimental setup of the monitoring
system [2]. For the VIS range a CMOS camera
is used. Schematic design (left), realized system
(right).

Figure 2. Brazing process in VIS image (left) and
NIR image (middle). Processed joint containing
a pore (right).

joint with an imperfection in the upper part, a small
hole in the joint (pore). A more detailed description
of this monitoring system is presented in [1].

3 Feature Extraction

Due to the high framerate of the cameras, the im-
ages captured are highly overlapping. In fact, with a
brazing velocity set to 1.3 m/min, new sections of the
generated joint appear with a size of about 9 lines in
the next VIS and 3 lines in the next NIR image. These
sections are inspected a fixed time after the brazing
process which allows to monitor fluctuations of the in-
ner heat emissions using the NIR camera. The position
of the image section used for inspection is fixed and lo-
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Figure 3. Example of the feature distribution of
the different classes from the VIS image (left) and
the NIR image (right).

cated directly behind the position of the laser beam.
The position of the section in the VIS image is the
same in the NIR image. Advantages of this approch
are:

• No parts of the joint are missed.

• Small imperfections can be detected.

• Feature extraction is computational inexpensive
due to the small amount of pixels in the sections.

Here, we use the global mean and standard devia-
tion of the pixel values in the sections from both im-
ages as features. Figure 3 shows an example for the
distribution of these d = 2 dimensional feature vectors
for the class of sections containing imperfections and
the one containing a smooth joint surface. It appears
that the distribution of the features from the VIS im-
ages is much clearer separated and that they may be
sufficient for a classification. However, there are cases
where samples of one class which are close to the other
class in the VIS distribution are more apart in the NIR
distribution, and vice versa. To benefit from this ef-
fect, the classifier presented in the following section
fuses calculated scores of log-likelihood ratios for each
sensor individually. To keep it more general, we con-
sider that X = (x1,x2, ...,xm, ...,xM ) is a supervector
of feature vectors xm from each of M sensors (in our
case M = 2) and that x denotes any feature vector of
this supervector.

4 Classification

The proposed method decides whether x belongs to
one or the other of the following two classes: C0 rep-
resent the class of smooth joint sections without im-
perfections and C1 is the class of joint sections with
imperfections. Let D(x) = i imply the decision for
choosing Ci, i = 0, 1. The Bayes decision rule for this
two-category classification states [7]:

D(x) = 0, if
p(x|C0)

p(x|C1)
>

λ01 − λ11

λ10 − λ00
·
P (C1)

P (C0)
(1)

where p(x|Ci), i = 0, 1 are likelihood functions,
λij = λ(D(x) = i|Cj), i, j = 0, 1, is the loss associ-
ated with deciding for Ci if the true state of nature is
Cj , and P (Ci), i = 0, 1, are the a priori probabilities
for each class. To benefit from the advantages of the
logarithm of the likelihood ratio, the condition in (1)
can be rewritten as [8]:

log
p(x|C0)

p(x|C1)
> log

λ01 − λ11

λ10 − λ00
+ log

P (C1)

P (C0)
(2)

For a more convenient notation, we substitute

L(x) = log
p(x|C0)

p(x|C1)
(3)

and

Λ′ = log
λ01 − λ11

λ10 − λ00
(4)

where L(x) denotes the log-likelihood ratio and Λ′

the loss ratio. The ratio of the a priori probabil-
ities P (Ci) and the loss ratio Λ′ can be written as

Λ = Λ′ + log P (C1)
P (C0)

, commonly reflecting both entities.

Accordingly, we achieve

D(x) = 0, if L(x) > Λ. (5)

In the case of M sensors with different feature vec-
tors fulfilling the necessary condition of statistical in-
dependency, the scores of the log-likelihood ratios can
be fused by

L̂(X) =
M∑

m=1

L(xm). (6)

This approach benefits from the fact that a currently
low score (L(x) ≈ 0) of one sensor can be compensated
by a higher score of another. Due to the noise of the
feature vectors, the Bayes decision (1) is not in all cases

the best decision. Especially for L̂(X) ≈ 0, a confident
decision about the class membership cannot be made.
For this reason a threshold variable Δ is introduced
which yields the margin [Λ − Δ;Λ + Δ] specifying a
state where the class membership is indefinite which
infers that a decision is rejected. The value of Δ de-
pends on the kind of the process and has to be chosen
dependent on the quality target. If Δ is large, e.g.,
more test sections are rejected and only high quality
joint sections are classified as smooth joint sections.
This may make sense if the testing task is crucial. Fi-
nally, all previous steps result in the following decision
rule:

D̂(X) =

⎧⎨
⎩

0 if L̂(X) > Λ +Δ

1 if L̂(X) < Λ−Δ
indefinite otherwise

(7)

Regarding the evaluation of the classifier, the intro-
duction of the indefinite state leads to six classifica-
tion cases (Table 1). The number of type 1 (T1) errors
which are occuring in an evaluation set leads to the
false reject rate (FRR) and the number of type 2 (T2)
errors to the false accept rate (FAR).
Besides the introduction of the indefinite state by

Δ, we have a second parameter Λ which influences the
classification results. Sometimes it is more costly to
have more T2 errors than T1 errors or vice versa. Thus,
we can apply different values for λij in (4) which adjust
the ratio of the FAR and FRR. In a non-visible joint,
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Table 1. Possible classification cases including a
reject decision.

Classified as Smooth Joint Imperfection
Smooth Joint true positive false positve

(type 1 error)
Reject indefinite indefinite

(type 2) (type 1)
Imperfection false negative true negative

(type 2 error)

e.g., small imperfections may be allowed to reduce the
workpiece scrap rate.
For each sensor and each class the likelihood func-

tions are approximated by density distributions of the
training data set. As density distribution functions
Gaussian mixture models (GMM) are used because
of their ability to approximate arbitrary functions [9].
Since we have multidimensional feature vectors, the
mixtures consist of multivariate Gaussian distributions
in the form:

N (x;μ,Σ) =
1

(2π)
d

2 |Σ|
1

2

e−
d

2
(x−μ)TΣ

−1(x−μ) (8)

where μ is a d-dimensional mean vector, Σ is a d×d
covariance matrix and |Σ| is the determinant of Σ.
The GMMs are generated by supervised training using
the expectation maximization (EM) algorithm which
yields for each class Ci a likelihood function with vari-
able x:

p(x|Ci) =

K∑
k=1

ωi,k · N (x;μi,k,Σi,k) (9)

with K being the number of assumed Gaussian dis-
tributions and ω being a weighting factor. Experimen-
tal results showed that K = 4 Gaussians in a GMM
worked well and are used in the following experiments.

5 Experimental Results

The proposed method is tested with the presented
monitoring system in a laboratory assembly. Work-
piece test pattern joints are brazed having a length of
about 15 cm with a flanged geometry. For creating
the joint imperfections, the process parameters were
adapted to unusual settings. For example, the braz-
ing wire feed rate is lowered in combination with a
small lifting of the process head. Thus, imperfections
like pores and wetting failures can be generated artifi-
cially. Because of the unusual process parameter set-
tings, the overall process often gets unstable and even
parts of the joint without imperfections do not have
the same quality as a joint generated by stable process
conditions.
Our training and evaluation set consists of 25 cap-

tured video sequences with imperfections. One of them
is a fine specimen with a completely smooth joint and
the others are all containing imperfections. The sec-
tions of the defective joints having the same smooth
appearance as the fine specimen and the sections con-
taining imperfections were annotated to class C0 and

Table 2. Number of imperfections and sections of
smooth joints in the training and evaluation set.

Training Evaluation
Big Pores 38 55

Medium Pores 54 101
Small Pores 22 92

Wetting Failures 17 48
All Imperfections 131 256
Imperfect Sections 2475 5465
Smooth Sections 2955 7658

Table 3. Classification results for smooth joint
sections. Λ = 0, Δ = 0.5

Features Smooth Joint Reject Imperfection
(T2 indef.) (T2 error)

VIS 7657 1 0
NIR 7517 136 5

COMB 7658 0 0

C1, respectively. The video sequences are further sep-
arated in a training (6 sequences) and an evaluation
set (19 sequences). Table 2 shows the distribution of
the different imperfection types in these sets.
For evaluation of the smooth joint sections, the di-

rect number of classified sections is used. In contrast
an imperfection is already regarded as detected if one
section containing the imperfection is correctly classi-
fied. As results we show absolute values because, due
to the general high quality requirements for the brazed
joints and the limited amount of data, expressing them
in terms of FRR and FAR is not useful. We used Λ = 0
and Δ = 0.5 in our experiments which corresponds to
equal a priori probabilities P (C0) = P (C1) = 0.5 and
losses λ01 = λ10 = 1, λ00 = λ11 = 0, meaning that
T1 and T2 errors are equally costly. In a real, well
adjusted process environment Λ = 0 may also be ade-
quate, since the probability of an imperfection is very
low and the cost for a missed imperfection is very high.
Achieved results for the smooth joint sections are

listed in Table 3. Indeed, they show that the features
from the VIS images are better than those from the
NIR images, but the combination (COMB) of both
leads to a perfect classification result on this evalu-
ation set.
Table 4 shows results for the evaluation of imper-

fections. Similar to the evaluation results of smooth
joint sections, the VIS features achieving a better de-
tection result than the NIR features. Furthermore, at
first glance it looks like the combination of both do
not yield a better result. But a closer examination of
the missed imperfections reveals that the imperfection
types are not the same. Both of the missed imperfec-
tions in the VIS images are of the category medium
sized pores. They show an unusual appearance: be-
side the pores are two bright spots with high intensity
values. They are affecting the extracted features in
such a way that the imperfections are not detected.
Otherwise, they are successfully detected in the NIR
images which also leads to a successful detection by
the combination of both, VIS and NIR. In contrast,
the missed and indefinite imperfections of the COMB

225



Table 4. Imperfection classification results for
each sensor and both combined. Λ = 0, Δ = 0.5

Features Smooth Joint Reject Imperfection
(T1 error) (T1 indef.)

VIS 2 1 253
NIR 14 3 239

COMB 2 1 253

Table 5. Imperfection classification results for the
combination of both sensors with a variation of
Λ. Δ = 0.5

Λ T2 error T2 indef. T1 indef. T1 error
0 0 0 1 2
2.7 3 5 0 0
-2.7 0 0 3 8

features are very small pores. They are close to the
resolution limit and can hardly be detected in the im-
ages even by the human eye. It is not mandatory to
detect them because they can be overcoated without
quality loss.
Table 5 shows achieved detection results for different

values of Λ. There are two assumed cases in applica-
tions of car body manufacturing:

• Case 1: Visible joint. The quality of the joint sur-
face is crucial. Every error should be detected (in-
crease Λ to minimize amount of T1 errors).

• Case 2: Non-visible joint. Very small imperfections
can be missed in order to keep production costs low
(decrease Λ to minimize amount of T2 errors).

In case 1 all imperfections are detected at the cost
of a few misclassified and rejected smooth sections. In
case 2 some imperfections, all of them very small pores,
are not detected for allowing a lower quality of classi-
fied smooth sections.
For the visualization of the results, the classified

joint sections from both cameras are put together to
two single mosaic images showing each the whole joint
in the VIS and NIR spectral range. The classification
result is marked by colors (green = smooth, yellow =
reject, red = imperfection) on each side of these mo-
saics (see Figure 4).
The evaluated method is not only showing good re-

sults, also it is pretty fast. The current MATLAB im-
plementation computes 160 frames/s for each camera
on an Intel Core i7 920 operating at 2.66 GHz.

6 Conclusions

In this paper we have presented a method for on-line
detection of joint imperfections by a classifier based on
the fusion of likelihood scores of feature vectors from
different sensors. We have shown that the method is
adaptable to different process requirements. The num-
ber of misclassifications can be reduced by a decision
reject based on a classification confidence value. The
first evaluation of this method demonstrates promis-
ing results and future work will focus on tests in a real
process environment.

Figure 4. An example of the generated mosaic
images with a detected imperfection (marked at
both sides).
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