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Abstract

Anomaly Detection in Wire Ropes is an important
problem. Detecting suspicious anomalies in the rope
surface is challenging because of the variety of its vi-
sual appearance caused by reflections or mud on the
rope surface. This hinders the discrimination between
uncritical variations and small defects within the rope
surface enormously. The fact that nearly no defective
samples are available to train a supervised system re-
lates this problem to the concept of one-class classi-
fication (OCC). In this work we show how to utilize
one-class classification with Gaussian processes (GP)
to detect anomalies in wire ropes. The method al-
lows modeling the distribution of non-defective data in
a non-parametric manner. Furthermore, it is really
easy to implement (few lines of code), embedded in a
Bayesian framework, and can be used with arbitrary
kernel functions. Therefore, it is suitable for a wide
range of defect localization applications. Our experi-
ments, performed on two real ropes, demonstrate that
the GP framework for OCC clearly outperforms for-
mer approaches for anomaly detection in wire ropes.
The obtained results are comparable with or even out-
perform those obtained with the Support Vector Data
Description, which is the state of the art reference in
the field of one-class classification.

1 Introduction

Wire ropes are used in more fields of daily life than
one might think. Elevators, bridges and ropeways are
just a few examples. For this reason, wire ropes have to
be inspected regularly to ensure their reliability. The
manual visual inspection of wire ropes is a challeng-
ing task. The heavy ropes cannot be unmounted and
cleaned in advance. Furthermore, the inspection speed
is quite high to ensure an analysis of long ropes in ac-
ceptable time. Additionally, the periodic structure of
wire ropes contributes to the fact that a manual visual
inspection is an exhausting and error-prone task.

The following two reasons complicate an automatic,
visual inspection of wire ropes: at first, there are not
enough defective samples available to model the arbi-
trary defect characteristics. For this reason, it is not
possible to train a classification framework in a super-
vised manner. Secondly, the image data exhibits a high
variance and a discrimination between a noisy appear-
ance and a real defect is a non-trivial problem even
for a human expert. Figure 1 gives an example for a
typical surface defect in wire ropes.

One-class classification (OCC) [12], also known as
outlier detection [4] or novelty detection [6], comprises
the learning of a binary classifier just given a set of
samples from a single target (or positive) class. The

Figure 1. A typical surface defect: a broken wire

goal is to detect samples which are unlikely to belong to
the target class. This concept is suitable for a problem
like anomaly detection in wire ropes, where the number
of defective samples is very limited.

There are various techniques to model the target
class: one common approach is to model the distri-
bution of the positive examples by parametric, genera-
tive models such as Gaussian mixture models [1]. Also
boundary methods like the k-nearest neighbor classi-
fier of reconstruction methods like k-means or princi-
pal component analysis can be involved to represent
the target class [12]. Recently published work mostly
uses kernel methods like the one-class Support Vector
Machine (1-SVM) [11] or the highly related Support
Vector Data Description (SVDD) [13], which use the
kernel trick to model the data distribution in a non-
parametric manner.

The application of Gaussian processes (GP) in ma-
chine learning also leads to a kernel based approach
which can, in contrast to SVM related methods, be
formulated in a Bayesian framework. A recent work of
Kemmler et al. [5] shows how to use GP for OCC. In
the following paper we demonstrate how to detect de-
fects on wire ropes with this technique and emphasize
its advantages, such as a simple implementation.

The remainder of this paper is structured as follows:
in section 2 we review related work dealing with an au-
tomatic visual inspection of wire ropes. Section 3 in-
troduces the usage of Gaussian process priors for OCC
problems. In section 4 we explain how to perform
anomaly detection in wire ropes. Our experiments
compare the various OCC approaches in the context
of anomaly and defect detection in wire ropes. They
are presented in section 5. Finally, we conclude the
paper with a discussion of our results.

2 Related Work on Wire Rope Analysis

Due to its relevance for rope safety, several ap-
proaches for an automatic visual inspection of wire
ropes were developed in the past [8, 9, 3, 14]. All of
them operate on image data, provided by a line camera
system comparable to the one described by Moll [7].

All of the mentioned work has the common goal to
detect anomalies in the measured rope data which ad-
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vert to a possible defect. Whereas the approaches of
Platzer et al. [8, 9] and Haase et al. [3] focus on the
visual appearance of the rope, Wacker and Denzler [14]
present a strategy for an image-based monitoring of im-
portant rope variables as the lay lengths of strands and
wires. Their approach is purely focused on the regu-
lar rope structure and it allows a detection of creeping
changes in these rope variables. However, they are not
able to diagnose anomalies, which change the visual
appearance of the rope surface as such as corrosion or
broken wires.

The work of Platzer et al. and Haase et al. can
be grouped into two different categories. In [9] the
anomaly detection in wire ropes is performed by a gen-
erative Gaussian mixture model and the suitability of
different textural features for this task is evaluated.
The other category consists of approaches, which ad-
ditionally incorporate the context imposed by the se-
quential character of the rope [8, 3].

Our intent is to show how well OCC can work in
this scenario without using any context knowledge or
structural information of wire ropes. This allows us
to develop a generic method which is suitable for a
wide range of other defect localization applications.
We compare our results to those obtained by the gener-
ative Gaussian mixture model described by Platzer et
al. [9], which also does not exploit context information.

3 One-Class Classification with GP

This section gives a brief introduction to one-class
classification with Gaussian process priors. First we
explain the basic ideas of machine learning with GP
priors [10] which is followed by a description of their
usage for one-class classification [5].

3.1 Gaussian Process Priors

Given n training examples xi ∈ X ⊂ R
D, which

denote feature vectors, and corresponding binary labels
yi ∈ {−1, 1}, we would like to predict the label y∗ of an
unseen example x∗. The goal in classification is to find
the intrinsic relationship between inputs x and labels
y. It is often assumed that the desired mapping can
be modeled by y = f(x) + ε, where f is an unknown
function and ε denotes a noise term. One common
modeling approach is to assume that f belongs to some
parametric family f(x;θ) and to learn the parameters
θ which best describe the training data.

However, the main benefit of the GP framework is
the ability to model the underlying function f directly
as a latent random variable, i.e. without any fixed pa-
rameterization (since all parameter configurations are
taken into account). The posterior of the label y∗ of an
unseen example x∗ can be derived by marginalization
of the latent function value f∗ = f(x∗):

p(y∗|X,y,x∗) =

∫
R

p(f∗|X,y,x∗)p(y∗|f∗)df∗ (1)

where we assume that the label is conditionally inde-
pendent of the example if the corresponding function
value is given. The function values f of the training set
X are also latent leading to a second marginalization:

p(f∗|X,y,x∗) =

∫
Rn

p(f∗|X, f ,x∗) p(f |X,y) df . (2)
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Figure 2. One-dimensional example of one-class
classification with GP regression as proposed by
[5]. The posterior mean and the negative stan-
dard deviation are both suitable OCC scores.

The prior of the latent function f can now be mod-
eled as a Gaussian process GP(0,K) with zero mean
and covariance function K. This allows modeling the
correlation of function values using the similarity of
input examples calculated by a kernel function, like
the radial basis function (rbf) kernel: K(x,x′) =
exp

(
− 1

2σ2 ‖x− x′‖2
)
. If we assume Gaussian noise

ε, p(y|f) is a Gaussian distribution and all involved
marginalizations can be calculated in closed form lead-
ing to a posterior p(y∗|X,y,x∗) which is also Gaussian
and has the following mean and standard deviation:

μ∗ = kT

∗

(
K + σ2

n
I
)−1

y , (3)

σ2

∗
= k∗∗ − kT

∗

(
K + σ2

n
I
)−1

k∗ + σ2

n
. (4)

K represents the kernel matrix of the training data, k∗
denotes the vector of kernel values of the new example
and the training set, k∗∗ = K(x∗,x∗) and y ∈ {−1, 1}n

is the vector of all binary training labels.

3.2 Utilizing GP for One-Class Classification

In contrast to other supervised classification meth-
ods, the GP framework allows tackling the OCC prob-
lem directly. If we have only given n training exam-
ples xi, which all belong to a single (positive) class
yi = 1, the Bayesian formalism described in the previ-
ous section still holds and the inference leads to suit-
able solutions for OCC applications. This is due to
the zero-mean GP prior on f which favors functions
around zero. Without this prior the simplest expla-
nation would be the function y∗ ≡ 1 which is com-
pletely unsuitable for one-class classification. Figure 2
shows an example of GP regression applied to an one-
dimensional example. It can be seen that the utiliza-
tion of a GP prior leads to a posterior mean function
which has high values (around y = 1) in high den-
sity areas next to the training points and decreases
monotonically if the distance to the training set in-
creases. Another important fact which is illustrated in
Figure 2 is that the posterior variance shows an oppo-
site behavior with high values in outlier regions. The
consequence is that the posterior mean and the nega-
tive variance are suitable OCC measures, which is also
validated in a more theoretical manner in [5].

The relation to other density estimation techniques
becomes obvious if we consider the case of a single
training point x (n = 1) and the use of a rbf-kernel,
which simplifies the formula for the posterior mean to:

μ̃∗ =

(
1

1 + σ2
n

)
exp

(
−

1

2σ2
‖x∗ − x‖2

)
. (5)
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This is equivalent to an unnormalized normal distri-
bution with mean value x if we assume noise-free ob-
servations (σ2

n
= 0). Other relations to e.g. Parzen

density estimation or normal distributions in feature
space can be found in [5]. The same work also studies
other measures for OCC derived from the GP frame-
work and approximation techniques when considering
non-Gaussian noise. For our application to anomaly
detection in wire ropes we only used the posterior mean
and variance of GP regression, because all measures
and variants showed a comparable performance in the
image categorization experiments of [5].

3.3 Implementation

The implementation of GP for one-class classifica-
tion is simple and straightforward in the regression
case, especially for the posterior mean. First of all,
the kernel matrix K has to be computed with an arbi-
trary kernel function such as the rbf-kernel. The only
thing which has to be done for training is to solve the
linear equation system

(
K + σ2

n
I
)
α = y with y be-

ing an n-dimensional vector of ones. A solution can be
found with the Cholesky decomposition, which involves
O(n3) operations. Afterwards, the estimated posterior
mean is kT

∗
α which involves O(n) operations. Cal-

culating the posterior variance is similar but involves
O(n2) operations during testing.

4 Anomaly Detection in Wire Ropes

Our evaluation of one-class classification with GP
priors is based on the anomaly detection problem
which arises in the context of automatic visual rope
inspection. In the following section we describe how to
compute image features used for our approach as well
as for the comparison with other OCC methods.

Due to the findings of Platzer et al. [9] we make use
of histograms of oriented gradients (HOG) [2] for the
description of the observed rope surface. HOG features
are well-suited for the problem of anomaly detection
in wire ropes and outperform most of the established
statistical features, which are usually used for visual
inspection tasks [15]. The regular structure of wire
ropes exhibits articulated gradient orientations along
the twist direction. Gradients with a perpendicular
orientation usually can be considered as anomalous.
The HOG descriptors are computed from gradient im-
ages. For this purpose, a sequence of 1d rope measure-
ments is concatenated to a time frame comprising 20
camera lines. The resulting 2d image has a width of 20
and a height dependent on the rope diameter in pix-
els. Subsequently, gradient images for these frames are
computed and divided into small cells of 20× 20 pixel.
For each of these cells a gradient orientation histogram
is computed whose entries are weighted with the gradi-
ent magnitude. Finally, a feature vector which gives a
description for the whole time frame is formed by con-
catenating the normalized cell histograms. The nor-
malization is performed with respect to the whole time
frame. We used histograms with four discrete orienta-
tion bins, as the distinct number of gradient orienta-
tions in intact rope data is limited. As proposed by
Platzer et al. [9], we further compute the entropy of
the discrete distribution resulting from each cell his-
togram, to improve a discrimination between system-

atic deviations in the orientation histograms and noise
caused by reflections, mud or abrasion. The resulting
feature vector has a dimension of D = 5 h

20
where h is

the rope diameter in pixels. Note, that in a preprocess-
ing step the rope is automatically segmented and h is
chosen to be the maximum pixel diameter observed in
a time range covering a full lay length of the rope.

For all different OCC approaches, a confidence value
is computed, which defines the likelihood of the sample
belonging to the target class. Nevertheless, an adjust-
ment of the confidence belt around the target class can-
not be performed without a set of outliers or anomalies
belonging to the counter class. On the other hand, this
is in general the case for OCC and it allows an appli-
cation dependent fine tuning of the decision threshold.

5 Experiments

Experimental Data: In our experiments we use
two different rope data sets. Both were acquired under
realistic conditions by the prototype system described
in [7]. In the following we refer to the two different
data sets by the terms ROPE1 and ROPE2 . ROPE1 has
a length of approximately 1.3km, the shorter ROPE2 is
400m long. The resolution of the line cameras is known
to be 0.1 mm/camera line.

For each data set a ground truth defect labeling was
provided by a human expert. The distinct difference
between the two rope data sets is the complexity of the
comprised errors. ROPE1 contains more obvious defects
whereas those contained in ROPE2 are often inconspic-
uous and small. We trained our OCC classifiers on a
training set computed from a rope sequence of 100,000
camera lines (10m rope, 5000 training examples). This
defect free rope region was proposed by a human ex-
pert. The evaluation was performed on the remaining
rope sequence which contains all labeled defects.

Experimental Setting: The variance σ2 of the
rbf kernel was set to e−2.5 in all experiments. Ad-
ditional experiments showed that for our application
the influence of this parameter setting on the results is
negligible. The noise parameter σ2

n
was automatically

determined. We iteratively increased the value of σ2

n

(0, 10−8, 10−7, 10−6, . . .) until the Cholesky decompo-
sition of the kernel matrix can be calculated ensuring
its positive-definiteness. An important parameter of
the SVDD method is the outlier fraction ν, which was
also experimentally analyzed but without a significant
difference in the results. Therefore ν was set to 0.1.

The results obtained for the different methods are
displayed in Figure 3 using ROC curves with the area
under the ROC curve (AUC) given in the legend. Note,
that the ROC curves are averaged over the results ob-
tained for the four individual camera views.

Evaluation: It is obvious that all three kernel-
based OCC approaches, posterior mean and variance
of GP regression and SVDD, outperform the classi-
cal GMM strategy proposed in [9]. From the AUC
values it becomes clear, that the GP based OCC
approaches offers a slightly better performance than
SVDD. The posterior mean approach achieves the best
results and is also faster than the posterior variance
approach during testing (cf. section 3.3). Figure 4
shows some example detections of our algorithm, where
wire parts with a posterior mean below a manually
selected threshold are recognized as defects. Please
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Figure 3. Average ROC curves for the (left) ROPE1 and the (right) ROPE2 dataset. The curves for all three
kernel-based methods (GP mean, -variance and SVDD) are very similar and best viewed in color.

Figure 4. Example images of a correct defect de-
tection (broken wire) and some false positives de-
tected by our approach. Results are highlighted
in magenta and the red bar on top of the rope
shows the defect annotation of a human expert.

note that approaches which exploit the special struc-
ture of wire ropes achieve higher recognition results
(e.g. [8] achieved an AUC value of 0.96), but we es-
pecially concentrate on defect localization without any
prior knowledge to ensure an universal applicability
with respect to other application areas.

6 Conclusions

We showed how to utilize one-class classification
with Gaussian processes for defect localization in wire
ropes. This kernel based approach outperforms previ-
ous OCC methods for defect localization significantly.
Beyond that, it is very simple to implement and it
is embedded in a probabilistic setting. Future research
concentrates on the application to other defect localiza-
tion problems and the development of specialized ker-
nel functions which incorporate prior knowledge about
the special structure of wire ropes.
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