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Image colorization using discriminative textural features
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Abstract

This paper presents a movel approach to scribble-
based image colorization. In the work reported here
we have explored how to exploit the textural informa-
tion to improve this process. For every scribbled image
we extract the most discriminative features using lin-
ear discriminant analysis (LDA). After that, the whole
image is projected onto a discriminative textural fea-
ture space. Our main contribution lies in propagating
the color in the feature space domain rather than us-
ing the luminance channel. The presented experimen-
tal validation confirms the importance of using textu-
ral information and show that our method significantly
improves the obtained colorization results.

1 Introduction

Image colorization is a process of adding colors to
a grayscale image. This is a sophisticated task which
requires high-level arbitrary knowledge concerning the
image content. Such information cannot be delivered
by recent image understanding systems yet and there-
fore this process is currently intended to be human-
assisted. Existing solutions make it possible to limit
the necessary human actions to defining the initial
color scribbles or giving examples of color images of
similar content. Among many others, the image col-
orization applications include: enhancing visual attrac-
tiveness of monochrome photographs or videos whose
color versions are not available, marking regions of in-
terest in medical images, interior design or make-up
simulators.

Image colorization attracts considerable attention
from the academia world. The first method [1] was
a luminance keying based on a function which maps
every luminance level into color space. Obviously,
the whole color space cannot be covered in this way
without increasing manual input from the user. Color
transfer method [12] colorizes a grayscale image based
on a given reference color image. This method matches
textural and luminance information and can be per-
formed automatically, but gives better results with user
assistance. Unsupervised image colorization by exam-
ple [11] matches at first similar image feature points to
predict their color. After that, the color is spread all
over the image using probabilistic relaxation. There
are also a number of methods which are focused on us-
ing the prior information delivered by a user in a form
of color scribbles. Levin et al. [7] formulated an opti-
mization problem based on an assumption that neigh-
boring pixels of similar intensity should have similar
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color values under the limitation that the colors indi-
cated in the scribbles remain the same. Yatziv and
Sapiro [13] proposed a method for determining propa-
gation paths in the image by minimizing geodesic dis-
tances from every scribble. Based on the distances
from each scribble, pixel color is obtained by blend-
ing scribble chrominances. In other works, the color is
propagated with probabilistic distance transform [6],
using cellular automaton [5] or by random walks [4].

In the work reported here we have investigated how
to exploit the textural information to improve the col-
orization result. Although the existing techniques work
well for colorizing plain areas, they fail for rough,
textured regions. Therefore, we transform the im-
age pixels into a discriminant textural feature space,
in which the color propagation is performed. This is
the main contribution of our work, while in alternative
approaches the costs are obtained based on the differ-
ence in pixel luminance [13]. The propagation itself, as
well as the chrominance blending, is executed follow-
ing the conventional techniques presented in Section 2.
Our method for computing the textural features and
color propagation using the obtained feature space is
described in Section 3. The obtained colorization re-
sults are shown and discussed in Section 4, and the
conclusions are presented in Section 5.

2 Color propagation and blending

In order to colorize a monochromatic image Y based
on a set of n initial scribbles {S;}, i = 1,...,n, first it
is necessary to determine the propagation paths from
each scribble to every pixel in the image. A path from
a pixel x to another pixel y is defined as a discrete
function p(¢) : [0,1] — Z2, which maps a position ¢ in
the path to the pixel coordinate. The position is an
integer ranging from 0 for the path beginning (p(0)
x) to [ for its end (p(l) = y). Also, if p(i) = a and
p(i+ 1) = b, then a and b are neighboring pixels.

The propagation paths from a scribble to every pixel
are determined by minimizing a total path cost:

-1
Cp) =>_p{p(i),pli + 1)}, (1)
=0

where p is a local cost between two neighboring pix-
els and [ is the path length. An image is considered
as a graph and the cost minimization is performed us-
ing Dijkstra algorithm [3]. The path route depends
mainly on how the local costs are computed. Follow-
ing Yatziv’s approach [13], the local cost is obtained
by projecting the luminance gradient onto a line tan-
gent to the path direction. This means that the cost
is proportional to the difference in luminance between
the neighboring pixels.



Chrominance of each pixel is determined based on
the propagation paths from every scribble. Its value
is computed as a weighted mean of scribbles’ colors
with the weights obtained as a function of the total
path cost. The chrominance is calculated as a weighted
mean of scribbles’ colors with the weights obtained as
a function of the total path cost. Usually two or three
strongest components are taken into account which
provides a good visual effect of smooth color transi-
tions. The final color value v(z) of a pixel z is ob-
tained as v(z) = Y, viw;(x)/ >, wi(x), where v; is the
chrominance of i-th scribble and w;(x) is its weight in
pixel z. We use Y C,.C}, color space and calculate color
values separately for C). and Cj channels. The weights
are obtained as

wi(w) = (Cylx) +1)77, (2)
where C;(x) is the total path cost from é-th scribble to
pixel z.

3 Textural features for image colorization

Regions of uniform texture quite often have simi-
lar chrominance. Following this fact, the texture may
be an important source of information in image col-
orization. Unfortunately, this is neglected by many ex-
isting techniques, which assume that the chrominance
boundaries are correlated with the brightness changes
rather than with the texture. Following this assump-
tion, the raw pixel values in luminance channel are used
as the color propagation domain [2,13]. Although color
transfer methods [8,12] exploit simple textural descrip-
tors, they do not provide the distinctiveness helpful in
improving the propagation. In our work we focus on
finding a better color propagation domain which takes
into account the textural features rather than the lu-
minance exclusively.

Texture analysis is a complex task itself and many
works have been reported, mainly in the aspect of
texture-based image segmentation [9,14]. The main
difficulty lies in a lack of precise definition of the cor-
rect texture segmentation result — usually the expected
outcome depends on a specific application. The con-
sidered case is not identical to the segmentation task.
Here, the aim is to define a suitable domain for color
propagation, and we have found textural features very
helpful for this purpose. Among the existing coloriza-
tion methods, textural features have been exploited for
color transfer [8,12]. However, only simple texture de-
scriptors are used there, which may be helpful in some
cases, but does not guarantee the distinctiveness be-
tween the regions marked with different scribbles.

3.1 Discriminative textural features

The color propagation domain should induce low
costs between pixels belonging to a single scribble. On
the other hand, the cost should be high, when the path
crosses a boundary between areas marked with differ-
ent scribbles. It is therefore important to find such im-
age properties that would be uniform within a single
scribble and different between the scribbles. It is worth
noting that the most relevant properties may be differ-
ent from case to case. For some images the luminance
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itself may be sufficiently distinctive (e.g. in case of car-
toons), while for others the variation in the gradient
intensity may be relevant. In the work reported here
we select the distinctive properties independently for
every scribbled image using linear discriminant anal-
ysis (LDA). The analysis is performed over a set of
simple image features extracted from pixels which be-
long to the scribbles. In this way we obtain the color
propagation domain which is dynamically conformed
to every specific case.

3.1.1 Linear discriminant analysis

Linear discriminant analysis [10] is a supervised sta-
tistical feature extraction method frequently used in
machine learning. It finds a subspace defined by the
most discriminative directions within a given training
set of M-dimensional vectors classified into K classes.
The analysis is performed first by computing two co-
variance matrices: within-class scatter matrix Sy,
Zfil > urer, Wk — pi)(ug — pi)" and between-class
scatter matrix Sg = Zfil(ui —p) (s — )T, where p
is a mean vector of the training set and p; is a mean
vector of the i-th class (termed K;). Subsequently, the
matrix S = S;[}SB is subjected to the eigen decom-
position S = ®A®T, where A = diag(\y, ..., ) is
the matrix with the ordered eigenvalues along the di-
agonal and ® = [v1]...|vy] is the matrix with the
correspondingly ordered eigenvectors as columns. The
eigenvectors form the orthogonal basis of the feature
space. Originally, the feature space has M dimensions,
but only those associated with the highest eigenvalues
have strong discriminative power, while the remaining
can be rejected. In this way the dimensionality is re-
duced from M to m, where m < M.

After having built the m-dimensional feature space
the feature vectors are obtained by projecting the orig-
inal vectors w onto the feature space: v = ®Tu.
The similarity between the feature vectors is computed
based on their Euclidean distance in the feature space.

3.1.2 LDA for texture analysis

In order to determine the discriminative features,
first we calculate basic image features from every pixel.
They are composed of: a) luminance, b) gradient in-
tensity, c) local binary pattern, d) mean value and e)
standard deviation computed in many kernels of dif-
ferent size, f) the difference between maximum and
minimum values in the kernels, and g) the pixel value
in the median filtered image. The basic features (d)
— (g) were obtained for 15 kernel sizes ranging from
3x3 to 31x31. Hence, every pixel x is described by
an M-dimensional basic feature vector u, (M = 63 in
the presented case). The feature vectors of the scribble
pixels are subsequently subject to LDA. Every scrib-
ble forms a separate class, so the analysis determines
the most discriminative features between the scribbles
for a given image. The feature vectors (v) obtained
using LDA are further termed discriminative textural
features (DTF). The distance between any two feature
vectors v1 and vo in DTF space is computed as:

m

d = Z<V1i — Vzi)g.

i=1

(3)



I

y
0

////////

G [H

A1 =1361.7 A2 =946.1

A3 = 263.0

b) A1 = 758.6 A2 =569.5 A3 =335.7

Figure 1. Scribbled images and their projections
onto three leading LDA components.
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Figure 2. Eigenvalues of subsequent LDA compo-
nents (relatively to the highest eigenvalue).

During our experiments we observed that for the ma-
jority of analyzed cases it is sufficient to reduce the
dimensionality of DTF vectors to m = 2. Also, we
limit the number of the input vectors in each class to
100 so as to reduce the LDA training time. If a scrib-
ble contains more pixels, 100 of them are randomly
selected. We have not observed any noticeable differ-
ence in the outcome compared to using all the scribble
pixels, while the training time is definitely shorter.

3.2 DTF-based color propagation domain

After training, a projection matrix ¢ is obtained
and every pixel in the image is projected onto m-
dimensional DTF space. Examples of two scribbled
images and their projection onto three leading LDA
components representing the most discriminative tex-
tural features are presented in Fig. 1. The eigenval-
ues associated with these components are also given
in the figure. It may be observed that these projec-
tions differentiate well between the areas marked with
the scribbles. Also, 20 highest eigenvalues obtained for
these two images are plotted in Fig. 2

Fig. 3 shows an image with two scribbles (a) marked
over forest and sky. The luminance of these pixels
scaled from 0 to 100 is presented in (b) on the hor-
izontal axis. It may be noted that although the for-
est pixels (F) are generally darker than the sky pixels
(S), the luminance alone is not a discriminative feature
here. The pixels projected onto 2D DTF subspace are
shown in (c). Here, two classes are well separated.

For every scribble a mean DTF feature vector is ob-
tained and its DTF-distance (3) to every pixel in the
image is computed in DTF space. In this way a DTF-
distance map d; is obtained for every i-th scribble,
which serves as a domain for determining the prop-
agation paths. The local cost p from pixel = to y
equals the y pixel value in the DTF distance map
(p(z,y) = d;(y)). Examples of DTF-distance maps ob-
tained for the landscape image in Fig. 1b are presented
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Figure 3. Scribble pixels (a) projected onto lumi-
nance (b) and 2D LDA (c) subspaces.

Figure 4. Examples of DTF-distance maps.

in Fig. 4. These are the distances from the scribbles
marked over: (a) sky, (b) volcano, and (c¢) ground.

It is worth noting that potentially the distance maps
could be used directly for chrominance blending with-
out determining the propagation paths. In this case,
to obtain an i-th weight for a pixel z, the distance
in DTF space d;(z) would be used instead of the to-
tal path cost C;(x) in (2). Such approach does not
guarantee continuity of the regions and therefore has
not been utilized in the investigated cases. However,
it may be useful for some other applications, e.g. for
color transfer or video colorization.

The propagation paths are determined so that they
follow the texture similar to that covered by the source
scribble as long as possible. This is contrary to the con-
ventional Yatziv’s approach [13], with which the path
is determined to minimize the gradient integrated in
the propagation direction. An example of a difference
between these two alternative approaches is given in
Fig. 5. It shows the propagation paths leading from a
scribble to a selected pixel obtained using two meth-
ods (the original scribbled image is shown in Fig. 1a).
The path determined using our method (a) does not
leave the striped area, which allows to colorize the im-
age correctly. The result obtained using a conventional
method (b) shows that the texture information is not
taken into account during the propagation.

In some cases the drawback of the presented method
lies in the precision. At the boundaries of regions hav-
ing different texture the pixels may be misclassified (it
can be seen in Fig. ba). Size of such uncertain area
depends on the kernel dimensions used for obtaining
the basic textural features. This results in observing
small halos at the region boundaries. We have ap-
proached this problem by determining a map of equal
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Figure 5. Propagation paths and colorized image
obtained using our (a) and Yatziv’s approach (b).



Figure 6. Input image with scribbles (a) and col-
orization results obtained with [7] (b), [13] (c)
and our algorithm (d).

DTF distances. Then, in proximity of the equally dis-
tant pixels, the propagation domain is changed to the
conventional one. This allows to reduce the aforemen-
tioned effect in most cases.

4 Experimental validation

We compared the proposed method with two
well-established colorization techniques proposed by
Levin [7] and Yatziv [13]. The first one is published
in the form of MATLAB code and for the latter a Java
applet is available to colorize a fixed set of images (for
others we used our implementation). We evaluated the
colorization on the basis of the visual result as this is
a commonly adapted practice in image colorization.

Several examples of colorization result achieved us-
ing our method and alternative algorithms are given
in Fig. 6. We validated our algorithm using three
types of images: 1) artificial to verify the theoretical
assumptions (1% row from the top), 2) semi-artificial
composed of various textures (2"¢ row), and 3) pho-
tographs to assess applicability of our approach. Their
sizes range from 280x 180 to 768 x 704 pixels. It may be
seen that our algorithm delivers the best visual effect
in all of the presented cases, making it possible to col-
orize the textures with the largest precision. The halo
effect mentioned in Section 3.2 can be observed around
the tree for the image in the bottom row. Also, small
imprecisions can be noted for the images in the top
two rows, but they are definitely smaller than for the
alternative methods. The photographs in 3"¢ and 4*"
row have been colorized perfectly using our method.

The time needed to complete the colorization pro-
cess has not exceeded 20s for the tested cases. We
have limited the number of pixels in every class to 100
and we use only two LDA dimensions. This assures
that calculating the DTF space is not computationally
expensive and takes a few percent of the time needed
to colorize the image using conventional methods.
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5 Conclusions and future work

In this paper we have presented a novel method for
scribble-based image colorization, which uses the dis-
criminant textural features domain for color propaga-
tion instead of the luminance channel. The experi-
ments have shown that the proposed solution greatly
improves the obtained results and facilitates human
assistance in the colorization process.

Although the DTF domain works well for color prop-
agation, its precision is limited at the region bound-
aries due to a large kernel size. This was discussed in
Section 3.2 and presented in Figs. 5a and 6. Some-
times it results in unnatural halo effects which can be
avoided in most cases using a simple technique. How-
ever, in future we are planning to develop a better
solution to this problem. Moreover, we want to ap-
ply the proposed technique to color transfer and video
colorization.
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