
   
 
 

Abstract 
 

Local feature matching is not robust to extract correct 
correspondences under many conditions, such as images 
with general deformations and repetitive patterns. To solve 
this problem, this paper proposes a new geometric 
constraint method: Maximal Clique Matching (MCM). In 
MCM, the global geometric constraint problem can be 
expressed as the maximal clique problem in graph theory. 
MCM starts from building a geometric correspondence 
graph (GCG) based upon the pairwise geometric 
information in local features, and then an efficient 
heuristic approximation algorithm is developed to get the 
global geometric relationships by finding the maximal 
cliques in GCG. Given the characteristics of the global 
optimality of maximal cliques, MCM is robust to occlusion, 
clutter, deformations and repetitive patterns. We evaluated 
the method using two public datasets. Results show that 
our method outperforms other up-to-date techniques. 
 

1 Introduction 
Local features have been very successful in solving a 

wide variety of problems in computer vision, from image 
matching, image retrieval, stereo-vision to object 
recognition. However, lack of global information may 
cause ambiguities under some conditions, such as 
repetitive patterns (such as chessboard and building with 
windows) and general deformations (such as viewpoint 
change). 

Our goal is to improve the accuracy of image matching 
using local features in the presence of repetitive patterns 
and general deformation. 

This paper proposes a novel geometric constraint 
method: Maximal Clique Matching (MCM). Our method 
can be categorized as pairwise constraint method. In MCM, 
geometric correspondence graph (GCG) is built upon 
pairwise geometric constraint extracted from local features. 
Then we develop an efficient approximation heuristic 
algorithm to find all the global geometric relationships. 
Given the characteristics of the global optimality of 
maximal cliques, MCM is robust to repetitive patterns by 
effectively ignoring outliers. 

The rest of paper is organized as follows. Section 2 
discusses the related work. Section 2 introduces our 
method. Section 3 describes two experiments in 
comparison with several recent methods and analyzes the 
results. Section 4 concludes. 

2 Related Works 
To overcome the general deformation and repetitive 

patterns, some methods use global information to enrich 
the descriptors. SIFT descriptor with global content in [2] 
adds curvilinear shape information from a much larger 
neighbor. 

Other methods use global information in matching 
process. Sample consensus methods such as RANSAC [3] 
and PROSAC [4] estimate the parameters of a prior 
geometric consistency model by sample correspondences 
selected from two images. But RANSAC and PROSAC 
can not work well with images with repetitive patterns, 
because of too many outliers. In [5], reinforcement 
matching scheme are employed on the affine-invariant 
log-polar elliptical bin. Relaxation method [6] is a 
probabilistic matching framework which iteratively update 
initial probabilities base on a compatibility function. 

Leordeanu and Hebert [1] present a spectral method for 
finding consistent correspondences between two feature 
sets. Our method can be categorized as pairwise constraint 
method. Our method differs from previous method as 
follow: (1) We introduce pairwise geometric constraint 
based on local features to build the correspondence graph; 
(3) We develop an efficient approximation heuristic 
algorithm to match multiple objects with repetitive patterns 
by finding the maximal cliques in graph. 

3 Maximal Clique Matching 

3.1 Geometric Correspondence Graph 
Given a image and a target image, let X = {x1,…,xn} and 

Y = {y1,…,ym} denote two sets of feature points extracted 
from two images. Let define an undirected and unweighted 
graph G = (V, E) as GCG, where V = {v1,...,vk} is the vertex 
set of G, and E�V×V is the edge set of G. Let 

( ) { }: 1vjN v j V e= ∈ =  denote the neighborhood of v in G.   
For the local features, the spatial location, scale and 

rotation are the local geometric information of an 
individual feature point. In our method, relative orientation 
and relative distance are used to describe the local 
geometric relationship between two points in the same 
image, as shown in Figure 3. x1 and x2 are two feature 
points in the left image. 1α  and 2α are the relative 
orientations. d1/r11 and d1/r12 are the relative distances. 

Then we use the semi-local geometric relationship to 
evaluate the pairwise geometric constraint between two 
correspondences. The pairwise geometric consistency 
should obey the following rules: 

 
MCM: An Efficient Geometric Constraint Method for Robust Local 

Feature Matching 
 

Kai Chen       Yi Zhou       Qi Zheng       Xiaokang Yang       Li Song 
Institute of Image communication and Information Processing 

Shanghai Jiaotong University,China 
Kchen@sjtu.edu.cn 

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN6-1

190



   
 
 

1 2 1 2 1( ) ( )α α β β ε− − − <            (1) 

( ) ( )2 1 11 2 21 21 d r d rε ε< <           (2) 

( ) ( )2 1 12 2 22 21 d r d rε ε< <           (3) 
Since the local geometric information is not stable 

enough for deformation, the threshold 1ε and 2ε � should be 
high enough that the most correct matches are kept. 
Another two specific cases should be concerned. First, in 
the case that two features have the same location but 
different orientation, the spatial distance is zero. So (2) and 
(3) do not need to be compute. Second, two 
correspondences may have the same point in a certain 
image. In this case, those two correspondences definitely 
are not consistent with the same weak geometric constraint. 

Then we give the relationship between pairwise 
geometric constraint and GCG. In GCG, each vertex 
represents a matching correspondence. We define the 
projections as follow: ,: ( )i j kF x y v� , : i kR x v� , 

:X k iQ v x�  and :Y k jQ v y� . F is bijection. R is 
injection. QX and QY are surjection. 

The vertices will be adjacent only if the correspondences 
those vertices represent are weak geometric consistent. 

1, (1) (2)
0,ij

if
e

otherwise
�

= �
�

             (4) 

The computational complexity of building graph is 
O(k2n2), where n is the number of points in the query image 
and k is the number in KNN. 

3.2 Finding Maximal Cliques 
After GCG is built, the next step is to fill out the outliers 

and group the inliers by the global geometric consistency 
relationship. In GCG, the correct correspondences are 
likely adjacent to each other and form a large maximal 
clique. But incorrect ones establish links with others only 
accidentally. So they are likely in small maximal cliques. 
So the problem of finding all the correspondences 
consistent to the same global geometric constraint is 
equivalent to the problem of finding all the large maximal 
cliques in a graph.  

Though finding the maximal cliques in a graph is an NP 
complete problem, many efforts have recently been 
directed to devising efficient heuristics algorithm. 
Algorithm Best-in is a greedy local search heuristic 
algorithm which is first proposed in [7]. The Best-in 
heuristics generate a maximum clique through the repeated 
addition of a vertex into a partial clique. A possible Best-in 
heuristic constructs a maximum clique by repeatedly 
adding a vertex that has the largest degree among the 
candidate vertices. In a graph, only those vertices that are 
the neighbors of all the vertices chosen before are probable 
in the maximal clique. So we can choose those vertices 
which are the neighbors of all the vertices chosen before to 
be the candidates. 

In this application, there are two issues that differ from 
the heuristic algorithms. First, one-to-multiple and 
multiple-to-multiple object matches are required. So the 
algorithm has to find all the maximal cliques in the graph. 
For example, in Figure 2, Clique 1 and Clique 3 represent 
two objects. They have to be accepted. Second, in some 

images with repetitive patterns, such as chessboard or 
buildings, all the points are similar to each other. The 
subset of the points in query image may match another 
subset of the points in target image, though all the 
correspondences are incorrect. In Figure 2, Clique 2 is an 
example. Clique 2 has to be rejected. 

We propose a novel algorithm AllMaximalCliques based 
on algorithm Best-in to find all the maximal cliques in the 
graph. To find all the large maximal cliques, we call Best-in 
to get the maximum cliques and delete some vertices in the 
graph iteratively. To avoid the second issue happening, we 
delete the vertices whose both points have already matched. 
The AllMaximalCliques is summarized in Table 1. 

 

Figure 2. An example of multiple objects matching using GCG. 

1. XMatch = ∅ , YMatch = ∅ , Matches = ∅ . 
2.Call Best-in to find the maximum clique C in G. 
3.If the deg(C)<n, finish searching the maximal cliques. 

Otherwise, continue. 
4. Matches Matches C= � ,        

( )X X XMatch Match Q C= � ,  

( )Y Y YMatch Match Q C= � . 

5. ( )( ) ( )( )\ X YG G R Match R Match= �  
6.Go to step 2. 

Table 1. AllMaximalCliques Algorithm 

 
 

Figure 1. An example of the geometric weak constraint. x1 and x2
are two features in query image. y1 and y2 are two features in 
target image. r11, r12, r21 and r22 are the size of the scale. d1 and d2
are the spatial distance between two features in the same image.
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Although our algorithm is an approximation algorithm, 
it can work well because the maximal cliques are always 
dominant in the application of local feature matching. In 
our experiment, we found even the correct correspondence 
is far below 1/10 among all, they can still be found. 

The complexity of finding a maximal clique in the graph 
is O(mk2n2) [21]. m is the number of all the maximal 
cliques. But n is far more than m and k. The computational 
complexity of our methods is in the same level O(n2) as that 
of some other up-to-date methods [5, 6]. 

4 Experiment 
Data Set: We use two datasets: (1) A public available 

dataset1 which is broadly used in testing local feature in 
typical scenes and transformations. The images are 
presented in Figure 3. (2) A datasets of image pairs with 
repetitive patterns proposed in [8]. The images are 
presented in Figure 4. 

Other Methods: We compare our method with three 
methods: NNDR [10], REINF (reinforcement matching) [5] 
and RELAX (relaxation matching) [6]. We choose NNDR 
to show the distinctiveness of the descriptor alone. 

Interest Points: We choose Harris-Affine [9] as 
detector and SIFT [10] as descriptor for better robustness to 
deformation. The Harris-Affine and SIFT codes are both 
implemented by Mikolajczyk which are provided online2. 

Evaluation Criterion: Correct matches are detected 
based on the homographies between the images. A couple 
of correspondence points (p, p’) is said to be correct only if 
|p’-Hp|<5, where H is the transformation between two 
images. 

In the first experiment, we choose four sequences from 
dataset which present two different scene types: structured 
(graffiti, boat) and textured (wall, bark), and three different 
transformations: viewpoint change (graffiti, wall), image 
rotation and scale change (boat, bark). In each sequence, 
we choose the first image to match the following four 
images with growing transformation. 

In [5], the experiments show that REINF provide better 
matching rate than RANSAC and PROSAC. In [6], 
RELAX shows the great advantage than previous methods. 

The experimental results of NNDR, REINF and RELAX 
are from [8]. We use the same code for local feature 
extraction. We also use the same criterion to evaluate the 
results. So our experimental results can be compared with 
the results of those methods. 

The results are shown in Table 2. For 16 pairs of images, 
MCM gives more matches while the matching rate is 
superior or equal to that of all the other methods. For the 
other 3 pairs of images, MCM is the second among four 
methods, and gives only a few matches less than RELAX. 
Only for one pair of images, MCM gives the worst result. 

Scene types: For textured scenes, all four methods can 
get high precision. Only a little improvement is obtained 
with our method. But for structured scenes, our method 
shows the great advantage in comparison with other 
methods, because the geometric relationship is more 
significant for structured scenes. 

 
1 http://www.robots.ox.ac.uk/~vgg/research/affine/ 
2 http://www.robots.ox.ac.uk/~vgg/research/affine/ 

Transformations: Harris-Affine and SIFT are more 
robust to rotation and scale changes than to viewpoint 
change, so the global geometric information becomes more 
important for viewpoint change. That is why the 
improvement obtained by our method is greater for 
viewpoint changes than for rotation and scale changes. 

We test on the Quad-Core AMD Opteron 800 MHz CPU. 
We keep 300 points with top cornerness in each image. The 
average matching time for a pair of images is 0.034 sec. 

In the second experiment, we choose the same images 
and evaluation criterion as the experiments in [22]. The 
results of other methods are also from [22]. The results are 
shown in Table 3. 

Our method gives both higher recall and precision for all 
four pairs of images. Especially for the structured scenes, 
our method outperforms other methods greatly. The 
average matching time for a pair of images is 1.25 sec. 
There are near 2000 feature points in every image. 

5 Conclusion 
This paper has proposed a novel graph-based geometric 

constraint method. The method is robust to repetitive 
patterns. The scheme expresses the geometric constraint 
problem as the maximal clique problem in a graph. This 
method utilizes a geometric correspondence graph based 
upon the pairwise geometric constraint information in local 
feature and an efficient approximation heuristic algorithm 
for finding the maximal cliques in GCG. We have made 
experiments for two different datasets. In comparison with 
several up-to-date methods, our method shows the better 
results and comparative computational complexity. The 
average matching time for a pair of images is 0.034 sec in 
300 feature matching. 
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Table 2. Result of the first experiment. M means the number of 
matching correspondences. P means precision. 

Image id NNDR REINF RELAX MCM 
M P M P M P M P 

Graf  2 82 0.96 93 0.96 115 0.92 129 1 
3 58 0.4 68 0.4 40 0.67 70 1 
4 23 0.35 24 0.5 24 0.5 28 0.61
5 13 0.08 13 0.08 8 0 10 0.2 

Boat 2 70 0.98 91 0.98 150 0.98 145 1 
3 75 0.95 98 0.95 131 0.98 126 0.98
4 22 0.88 29 0.88 34 0.92 50 0.92
5 19 0.99 22 0.99 24 0.99 42 0.94

Wall 2 82 0.96 93 0.96 115 0.92 129 1 
3 58 0.4 68 0.4 40 0.67 70 1 
4 23 0.35 24 0.5 24 0.5 28 0.61
5 13 0.08 13 0.08 8 0 10 0.2 

Bark 2 35 0.97 34 0.97 52 0.98 71 1 
3 17 0.88 24 0.87 31 0.93 35 1 
4 3 1 8 1 9 0.9 17 0.88
5 11 0.99 14 0.99 15 0.8 9 1 

Table 3. Results of the repetitive pattern image matching.  
R means recall. 

Scene Method M R P 
Office 
(structured 
scenes) 

NNDR 6 0.5 0.064 
REINF 16 0.5 0.17 
RELAX 38 0.66 0.53 
MCM 51 0.88 0.96 

Keyboard 
(structured 
scenes) 

NNDR 18 0.44 0.1 
REINF 18 0.44 0.1 
RELAX 40 0.66 0.37 
MCM 50 0.98 0.69 

Arenas 
(textured 
scenes) 

NNDR 353 0.94 0.48 
REINF 347 0.96 0.47 
RELAX 568 0.98 0.79 
MCM 627 1 0.89 

Building 
(textured 
scenes) 

NNDR 276 0.91 0.44 
REINF 300 0.92 0.48 
RELAX 420 0.98 0.72 
MCM 519 1 0.91 

 
Figure 3. Test images for baseline matching. From left to right:
Graffiti, Boat, Wall and Bark. 

Figure 4. Test images for repetitive pattern matching. From left to 
right: Office, Keyboard, Arenas and Building. 
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