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Abstract

This paper proposes a novel color prior to reduce
outlier keypoints for feature-based 3D head tracking.
It is more effective than existing approaches for two
reasons. First, the color information of a keypoint is
represented by a powerful covariance descriptor (RGB
Sigma Set). Second, the color prior is modeled from
the posteriors of a discriminative classifier based on
Random Projection trees. To demonstrate its strength,
we integrate the prior into a 3D head tracking system
that estimates pose by matching a set of wide-baseline
keypoints. Our experiments show that most outliers
are rejected by the proposed prior, which in turn sig-
nificantly improves the accuracy, speed and robustness
of the tracking system.

1 INTRODUCTION

Feature-based tracking via wide-baseline matching
has attracted increasing attentions recently for its com-
putational efficiency [8]. One crucial problem with it is
how to reject the outlier features in a fast and effective
way. Most existing approaches handle this relying on
a motion prior derived from previous state or a fixed
dynamic model which cannot guarantee to be reliable
permanently [8]. In this paper, we propose to utilize
a color prior to deal with this problem and verify its
efficiency within a 3D head tracking application.

Our motivation to use color clue comes from the ob-
servation that it provides more stable and robust in-
formation to distinguish inlier and outlier keypoints.
Color information has been researched for many years
and proven to be effective for face detection and track-
ing. A good literature survey was given in [10]. The
conventional attempts focused on generative models.
Unfortunately, none of them is fully insensitive to the
various affects, such as illumination and races. It is
only recently that discriminative knowledge start to
be used for object tracking.

We propose a different approach to use color to re-
ject outliers in feature-based 3D head tracking. Rather
than exploring a discriminative color space, we use a
discriminative model to distinguish inliers and outliers
which relies on the sigma set [3] and random projection
trees [2]. Sigma set is a second order statistical descrip-
tor demonstrating good discriminative power. It is pro-
posed to tackle the problem that the similarity measure
of covariance matrix is very time-consuming [7]. Ran-
dom Projection tree (RP tree) is a variant of the k-d
tree widely used in machine learning as a spatial par-
titioning data structure. RP tree has been proposed
in [2] as manifold-adaptive spatial data structures for
modeling data with a low intrinsic dimensionality and
lying artificially in a high D-dimensional space. Its ef-

ficiency has been proved in many applications. Forests
of RP quantization trees have demonstrated their rele-
vance in [9] for face recognition where each face is rep-
resented as a histogram of quantized high dimensional
and near invariant features.

Our model describes the points by our named RGB
Sigma Set and identifies outliers by RP based classifi-
cation trees with color information only. Its efficiency
is verified through its power to identify outliers and
the tracker’s improvement by integrating it as a prior.

The structure of the paper is as follows: Section
2 formulates the problem and the creation of color
prior is presented in Section 3. Section 4 introduces
a feature-based head tracker. Section 5 shows our ex-
perimental results and Section 6 closes the paper.

2 Problem formulation

In feature-based head tracking, the key step is to
establish a set of geometric 3D-to-2D correspondences
by matching individual features to a database of fea-
tures learnt from reference images. The feature is com-
puted from a local patch around a keypoint in graylevel
space. For the i sample k̃i in our keypoint database{
k̃1 . . . k̃m

}
, denote f(k̃i) as its graylevel feature and

Ui its associated 3D position. At run-time, given the
keypoint set K = {k1...kn} from a video frame, each
geometric correspondence Ui ↔ vj is determined by
the feature matching with highest probability,

arg max
Ui↔vj

P (f(k̃i)|f(kj)) (1)

where vj is the 2D position of kj . In practice, this
matching can cause outlier correspondences from back-
ground clutter, mostly because the used feature de-
scriptor is not discriminative enough. If there were ex-
cessive erroneous correspondences, it will be impossible
to find the consistent pose parameters. In observation,
color information is usually distinctive enough to dis-
tinguish face from background clutter. Denote c(kj)
as the color feature of keypoint kj . To integrate color,
we change the above decision function to be

arg max
Ui↔vi

P (f(k̃i)|f(kj))f(c(kj)) (2)

where f(c(kj)) is a binary function that stands for
the inlier/outlier attribute of kj given c(kj). Since it
gives a priori confidence to feature matching from color
measurement, we call it color prior. In the following,
we will describe how to yield and use this prior.

3 Color prior

The color prior is defined to identify each keypoint as
inlier or outlier and its pipeline is illustrated in Fig. 1.
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Figure 1. Pipeline of the color prior. The covariance matrix of RGB values in the local patch of keypoint
k is calculated and the RGB sigma set c(k) is built by decomposing the covariance matrix. Then c(k) is
classified by the RP based classification trees with the numbers illustrating the tree layers. The classification
responses are finally used to generate the binary color prior f(c(k)) of keypoint k.

The color feature c(k) of each point is represented by
a novel RGB Sigma Set vector that captures covariant
relationship of color channels. And the binary prior
is based on the classification response of the Random
Projection(RP) based classifier. Note that c is short
for c(k) in the following sections.

3.1 RGB Sigma Set

The sigma set is a second order statistics derived
from the covariance matrix to solve the distance com-
putation problem of covariance matrix [3]. Here we
adopt the RGB information to describe each pixel and
use the sigma set to represent one keypoint. A dp = 3
dimensional vector zij , j = 1, 2, . . . , k is used to en-
code the RGB values of each pixel and the covari-
ance matrix [7] of all k pixels in one patch is given
as Ci = 1

k−1

∑k
j=1(zij − μ)(zij − μ)T where μ is the

mean vector μ = 1
k

∑k
j=1 zij .

Let Ci = LLT be the Cholesky de-
composition on the covariance matrix. A
set of dp-dimensional sigma points S ={
μ + l1, μ + l2, . . . , μ + ldp , μ, μ− l1, . . . , μ− ldp

}
are obtained from the lower triangular matrix L where
li is the α-weighted ith column of L, with α =

√
k and

μ is the mean vector talked beforehand. This sigma
set represents the statistics of the patch up to second
order, and allows simple similarity measurement on
a Euclidean vector space. Then we define the color
feature cj for one patch as the concatenation of these
points which is a d = dp(2dp + 1)-dimensional vector
and use it as the input of the following classifier.

3.2 Random Projection based Classification
Trees

RP tree is proposed for vector quantization [2] and
the efficiency comes from its particular binary splitting
method: instead of dividing a given region into two
along coordinate directions at the median, they divide
along a random direction.

In our discriminative model, d-dimensional keypoint
color feature c is required to be classified. The label for
each keypoint is denoted as y. That is, a binary clas-
sifier is needed to identify each c as belonging to face
(y = +1) or background (y = −1). To accomplish that,
data at each node are separated by maximizing the
entropy based score measure Sc(L, T ) = 2 Ic,T (L)

Hc(L)+HT (L) .

Here Hc(L) and HT (L) denotes the classification en-
tropy and split entropy and Ic,T (L) denotes the mutual
information of the split and the classification. The data
at each node is split by a simple linear function given
as:

if bT c + t ≤ 0, split right; otherwise, split left (3)

where b is a d-dimensional random projection vector
and t is a random scalar threshold.

Training the trees is to select best b and t for each
node. Here b is chosen from a preselected small dictio-
nary of d-dimensional projection directions. Given the
whole training set and projection direction dictionary,
the trees are constructed. The recursive tree building
algorithm stops when the node receive too few data or
when its depth reaches a maximum. Once the forest
of N trees is trained, all the leaves encode conditional
probabilities for each class. We define P i

j (c|y = +1)
and P i

j (c|y = −1) as the conditional probabilities of
face and background respectively at jth leaf of ith tree.

Hence, P i
j (c|y = +1) =

N+
ij

N+ and P i
j (c|y = −1) =

N−ij

N− .
N+

ij , N−
ij are the number of training samples of face

and background at this leaf. While N+, N− denote the
whole number of face and background training data.

At classification stage, each keypoint represented as
c is dropped down the forest and reaches N leaves.
Thus, the final conditional probability of c is the av-
erage of all the conditional probabilities of its reach-
ing leaves P (c|y) = 1

N

∑N
i=1 P i

lj
(c|y) where P i

lj
(c|y) is

the conditional probability at the reaching leaf of ith

tree for the keypoint. According to Bayes equation
P (y|c) = P (c|y)P (y)

P (x) , we can obtain P (y|c) ≈ P (c|y)
by assuming equal prior.

3.3 Defining the Color Prior

The color prior is defined as a 0-1 function by com-
paring the two class posteriors P (y = +1|c) and
P (y = −1|c), that is:

f(c) =
{

1 P (y = +1|c) > αP (y = −1|c)
0 otherwise

(4)

From this prior, a keypoint k is identified as an outlier
or not before graylevel matching, which saves time in
practice. Note that we set α = 0.9 to lower the true
negative rate as compared to α = 1.0.

182



4 Gray Level Feature-based 3D Head Track-
ing

The 3D head tracking is performed by matching in-
put gray level features to a database of features from a
known target using a fast nearest-neighbor algorithm,
and then runing a Perspective-n-Point (PnP) tech-
nique to recover the 3D pose specifying these matches.
To obtain 3D-to-2D correspondences, a 3D model is
constructed from two reference images and a database
of keypoint features with their 3D positions is learned
from the images. At run-time, each individual fea-
ture is matched with the database using fast nearest-
neighbor indexing. And a set of 3D-to-2D correspon-
dences can be established to recover the underlying
3D pose. The 64-dimensional Speeded-Up Robust Fea-
tures (surf) descriptor is used as the graylevel feature.
And the fast nearest-neighbor indexing comes from the
implementations in the flann library [6].

With only the feature matching, motion jitters are
inevitable. Hence, a set of short-baseline correspon-
dences, established by tracking optical flow, are also
incorporated with local constancy assumption. For
easily associating 3D positions, the optical-flow can-
didates are selected from two sources - the keypoints
recognized at previous frame and a subset randomly
drawn from model vertices.

Then the consistent 3D pose can be obtained by si-
multaneously minimizing the reprojection errors of the
two correspondence types

arg min
R,T

{
Nf∑
i=1

‖ K[R|T]Ui−vi ‖ +
Ns∑
j=1

‖ K[R|T]Uj−vj ‖},

(5)
where K is the known camera intrinsic matrix, Ui ↔
vi is a pair of feature correspondence and Uj ↔ vj

a pair of optical-flow correspondence. The 3D rota-
tion and translation matrices R and T are the param-
eters to recover. One may notice that here we treat
the reprojection errors of the two correspondence types
equally, but to emphasize the dominant role of the fea-
ture type, we adapt Ns as Nf is varied at each frame
and always keep Ns ≤ Nf .

Once we obtain an adequate number of graylevel
feature and optical-flow correspondences, an efficient
non-iterative PnP algorithm [5] was adopted to gener-
ate the pose hypothesis and prosac [1] instead of the
typical ransac algorithm was employed to rank the
correspondences just before the hypothesis generation.

5 Experiments and results

The performance of the color prior was evaluated in
two aspects. Its discriminative ability was firstly exam-
ined by comparing with histogram based descriptions.
Then, its practical role of color prior was assessed in
3D head tracking application. First, we present the
color histograms we are using.

5.1 Color histograms

To verify the discriminative power of sigma set, dif-
ferent histograms are built based on different color
spaces. The color spaces considered in this work are:
RGB color space, opponent color space, normalized

RGB color space and transformed color space [10] and
their corresponding histograms are denoted as RGB-
Hist, OppHist, rgHist and TransHist respectively. HSV
space has been considered quite often in computer vi-
sion. Hence, we also tested the histogram of Hue com-
ponent which is denoted as HueHist.

5.2 Classification results

The discriminative abilities of all the descriptors
were evaluated by performing the classifier on the
videos from Boston University [4]. The classifier is
trained with one single input image. To enhance its ro-
bustness, a set of new views of this image are also gen-
erated with randomly drawn affine transformations. In
total, 20 trees with a maximum depth of 5 are learned
and 200 random projection directions are preselected.

Figure 2. True positive rates of each descriptor on
’ssm1’ sequence. Mean TPRs for RGB Sima Set,
RGBHist, OppHist, rgHist, TransHist and Hue-
Hist are 0.9882, 0.9117, 0.9252, 0.9347, 0.8843,
0.8473 respectively. RGB Sigma Set outperforms
others with a near 100% true positive rate.

Figure 3. False positive rate of each descriptor on
’ssm1’ sequence. RGB Sigma Set leads to a quite
low false positive rate.

To measure the performance of our classifier, we
manually labeled the ground truth of the ’ssm1’ video
and computed the true positive rate (TPR = TP

TP+FN )
of each frame as depicted by Fig. 2. The false posi-
tive rates (FPR = FP

FP+TN ) were also compared to get
a more thorough evaluation as shown in Fig. 3. RGB
Sigma Set leads to a near 100% TPR and a 0.05% FPR
for most frames. Thus, most inlier keypoints are kept
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while rejecting most outliers. RGB Sigma Set outper-
forms other descriptors even with a lower dimension-
ality because it is a up-to-second-order statistics and
is obtained from the covariance matrix of colors. The
covariant relationship between color channels leads to
the better discriminative power.

We also test the RGBSIFT descriptor which is the
combination of sift descriptor on each color channel.
However, the 384-dimensional descriptor can not dis-
criminate face keypoints from background keypoints
well and its mean precision is only 0.628. RGB Sigma
Set and color histograms show reliable discriminative
ability while RGBSIFT results in a worse classification
performance. RGB Sigma Set and color histograms
capture statistical color information but RGBSIFT
combines color and local shape information.

5.3 Application to head tracking

This subsection assesses the roles of the proposed
color prior in 3D head pose tracking. Both quantitative
and qualitative experiments were conducted.

Figure 4. Ratio of inliers for each frame with and
without color prior.

The quantitative experiment was conducted with the
same ‘ssm1’ sequence from Boston University [4]. The
measure is defined as the ratio of inliers to all the
matched keypoints during pose tracking. This is rea-
sonable since it is critical to the final prosac selec-
tor. Fig. 4 depicts the improvement of ratio of inlier
by about 0.2 after the color prior is imposed. Conse-
quently, this improvement saves the number of prosac
iterations such that pose tracking is speeded up by
about two times.

The qualitative experiments were carried out with
live-captured challenging video sequences. Fig. 5 shows
the comparative results with and without color prior.
With the color priors, a larger portion of inliers is
reached and the tracker is more robust to large head
movements and sudden changes of lighting conditions.

6 Conclusion

Our proposed color prior helps to decide if a keypoint
represented by our named RGB Sigma Set is an inlier
or not. Its discriminative ability is achieved by Ran-
dom Projection based classification trees. It is demon-
strated to be robust to pose variations, facial expres-
sions and illumination changes. We also verify its merit

through a 3D feature based head tracker. We believe
that it will also be a good prior for other head-related
tasks, such as face localization and face recognition.
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