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Abstract

This paper addresses the problem of stabilizing
spherical videos. Whereas various techniques have been
proposed to stabilize conventional videos, this work is
the first approach proposed for omnidirectional videos.
We introduce a method for extracting the camera path
and 3D information of the environment. A desired
smooth stabilized path is obtained by modifying the
original camera path. We propose a method for syn-
thesizing a stabilized video with respect to the desired
path. Each output frame is generated by warping a
single frame from the input video. Experiments on real
data show that the proposed approach removes shakes
and jitters from omnidirectional videos successfully.

1 Introduction

A wide gap exists between the quality of amateur
and professional videos. One of the most important
reasons is the unwanted motions of camera which im-
plies shakes and jitters in amateur videos, which im-
plies shakes and jitters in amateur videos, while shoot-
ing amateur videos. Whereas, professional videos are
shot under controlled conditions with a smooth cam-
era motion. The aim of video stabilization is to remove
shakes from videos.
Existing methods are developed for conventional

videos, which are obtained by perspective (pinhole)
cameras. These cameras have a limited view angle.
Cameras able to capture the entire environment are
becoming more popular and being applied to various
tasks [10, 18]. Frames acquired by these cameras are
called omnidirectional because they can observe in all
the directions.. Since omnidirectional images capture
data from the entire environment, they contain more
information. Hence, it is preferable to use these videos
instead of conventional ones in numerous applications
like autonomous vehicle driving, localization, and dig-
ital mapping [2].
Omnidirectional cameras usually consist of a cluster

of conventional cameras. Each camera takes a picture
of a portion of the space, then all these pictures are
stitched to form a single image. Displaying omnidirec-
tional images is not as straightforward as conventional
ones. One method is to expand them on a 2D plane
which is called the panoramic representation (Fig. 1-
left). Another method to represent omnidirectional im-
ages is the spherical representation where the image is
mapped on a unit sphere (Fig. 1-right). Since epipo-
lar geometry properties for spherical images are similar
to those of conventional images, we consider spherical
images in this work.
Since pinhole camera properties are not satisfied in

panoramic representation of omnidirectional images,

Figure 1. Panoramic (left) and spherical (right)
representation of omnidirectional images.

we cannot apply existing methods for conventional im-
ages on them. Therefore, new approaches should be
developed for omnidirectional images. Our work is the
first method which can perform video stabilization for
omnidirectional videos; specifically, for spherical im-
ages. We also propose a structure from motion tech-
nique for spherical images in this paper. One of the
advantages of using spherical images is that we can ap-
ply this method on all central omnidirectional videos
(e.g. aligned camera cluster, central catadioptric sen-
sors, fisheyes, etc) since all of them can be represented
in the spherical representation [1, 15]. Furthermore, in
conventional image stabilization, some empty regions
appear in the margin of the output image because of
the deformation. To remove these regions, most meth-
ods crop images so that the resolution of the output
video becomes lower than the input video. In spher-
ical images we can naturally overcome this problem.
Also, our method synthesizes each output frame using
a single input frame; therefore, it prevents ghosting
regions in the presence of dynamic objects.

2 Related Work

Most video stabilization methods consist of three
main steps: motion estimation, motion compensation,
and image composition [16]. The task of motion esti-
mation aims to compute the camera trajectory, given a
motion model (e.g. homography, or essential matrix).
The smoother these motions are, the less shakes the
video has. Original motions are smoothed in the com-
pensation step, and a stabilized video is synthesized in
the third step. Stabilization methods can be divided
into two main groups based on considering 2D or 3D
motions.
2D approaches consider motions of interest points

on the image plane. A common method is to study
pixel motions between two successive frames by esti-
mating a homography and smoothing all homographies
in the whole sequence. In [6], authors use optical flow
to detect a large planar region and fit a homography to
that region. Although homography-based approaches
perform well for planar scenes or when objects and
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Figure 2. Trajectories extracted from the input
video (left). SfM result: the camera path and 3D
points corresponding to the trajectories (right).

buildings are far enough from the camera, they fail
in highly non-planar scenes with different depths. To
solve this problem, a 2.5D motion model is proposed
in [7]. An approach for smoothing using Kalman fil-
ter is proposed in [11] and an image alignment method
for motion estimation in [19]. Most of these meth-
ods damp shakes and jitters between two successive
frames. In [9], authors propose a method to consider
more than two frames. They track some interest points
in the video and extract their trajectories. Then, these
2D trajectories are smoothed and the original frames
are deformed with respect to them.
One of the drawbacks of considering 2D motions is

that they do not contain all information of the mo-
tion because motions are happened in 3D. Hence, some
people believe considering 3D motions instead of 2D
motions leads to better results. 3D motion of a cam-
era corresponds to its location and orientation while
shooting the video. One may consider replacing the
original camera path with a smoother one along which
if the camera had moved, the video would have had less
shakes. We propose a 3D approach for omnidirectional
videos in this paper.
Different approaches have been proposed to smooth

the original camera path and synthesize a new video
for it. A method using motion inpainting for full-frame
stabilization and deblurring is proposed in [14]. In [3],
a method based on non-metric scene reconstruction for
un-calibrated video sequences is proposed. It renders
each output frame using multiple input frames. The
drawback of this method is that dynamic objects are
ghosting in output frames. To avoid this problem, au-
thors in [12] propose a method which uses a single
frame. They consider a grid on the input frame and
find its corresponding grid in the output frame and use
texture mapping to synthesize the output frame.

3 Obtaining a Desired Camera Path

In this section, we explain how the original camera
path is estimated and a desired smooth path is ob-
tained.

3.1 Extracting the Original Camera Path

We build a number of trajectories in the input video
(Fig. 2-left) by detecting and tracking interest points
in successive frames. Interest points can be detected
and described using SIFT [13] on panoramic images or
SIFTS [4] on spherical images.
These feature trajectories are used to obtain the

camera path using Structure from Motion (SfM) for
spherical images. The aim of SfM is to estimate a set
of points cloud and camera poses. The points cloud

{X} contains 3D points whose projections in the im-
ages are referred as trajectories. The camera poses
consist of two components: location and orientation.
We propose an SfM method for spherical images in

this paper. The camera poses of the first two frames
of the sequence are estimated by decomposing the es-
sential matrix using the method proposed in [17]. The
points cloud is initialized by back projecting points ob-
served from the first two frames and finding their inter-
sections. The camera pose, location and orientation,
for the third spherical frame is obtained by minimizing
the reprojection error between projection of the points
cloud and feature points obtained by SIFT. The points
cloud is updated by adding new points which were not
back projected previously. This process is performed
for each frame in the sequence, frame by frame. After
a certain number of frames, we refine the estimations
of all camera poses and the points cloud obtained so
far by minimizing the reprojection error.
Once camera poses of all frames in the sequences are

estimated, all camera poses and the points cloud are
refined by using a bundle adjustment method that we
have developed for spherical images. Let Xp ∈ {X} be
corresponding to trajectory p. We project this point
in a frame f where it is observed using equation

xfp = R�
f (Xp −Tf ) (1)

where Rf and Tf are the rotation and translation,
respectively, for frame f , and xfp is on the unit sphere.
Let x′

fp be the corresponding point toXp extracted by
SIFT in frame f . We minimize the angle Δθfp between
all corresponding points xfp and x′

fp as follows

min
{Xp,Rf ,Tf}

∑

p

∑

f

wfp(Δθfp)
2 (2)

where wfp is 1 if Xp is observed at frame f and is zero
otherwise. A result of SfM is shown in (Fig. 2-right).

3.2 Estimating a Desired Smooth Path

A desired path is one along which if the camera had
moved, we would have had a less shaky movie. To ob-
tain a desired path, we modify the pose of each cam-
era so that the whole path becomes smoother. Cam-
era locations can be represented as 3D translation vec-
tors and camera orientations as rotation matrices. We
smooth translation component by Gaussian smooth-
ing applied element-wisely. Since the space of rotation
matrices is not linear, theoretically rotation matrices
cannot be smoothed element-wisely using Gaussian fil-
tering. In [8], a method is proposed for smoothing a
sequence of rotation matrices by transferring them into
a linear space. However, experimental results show
that if we consider quaternion representation of rota-
tion and smooth them using Gaussian filter, we can
obtain good results. Also, in specific scenarios we can
fit a certain model to our data. For example, if we
know that the camera moved on a straight line with-
out rotation, we can assign a constant rotation to all
frames. This can be performed by considering the av-
erage value of quaternions.

4 Synthesizing a New Video

After obtaining a desired path, we generate a stabi-
lized video which would have been shot if the camera
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had moved along this path. For each frame I from the
original video, we synthesize a corresponding stabilized
frame I ′. 3D points from the point cloud obtained by
SfM which are observed from I are likely observed from
I ′ too. We project these points into both frames to
obtain some corresponding points. These correspond-
ing points guide us to warp I to obtain I ′. However,
these points are distributed sparsely on the image, and
some regions may not contain any points. This causes
an inaccurate warping. To generate an appropriate
output frame, we consider a structure for I and pre-
serve this structure in I ′. Our approach is inspired
from [12]. Their method is developed for conventional
images but we propose a triangular grid on the surface
of a unit sphere as the structure for omnidirectional
images (Fig. 3-left). Corresponding points are utilized
to find a similar corresponding triangular grid in I ′.

Assume we have a triangular grid on spherical image
I and we want to find its corresponding grid on I ′.
Let Pj and P′

j be the projections of a point from the
point cloud in images I and I ′, respectively. Let Pj be
inside triangle Vi whose vertices are V1

i , V
2
i and V3

i ,
and also assume P′

j is inside triangle V
′
i whose vertices

are V′1
i , V

′2
i and V′3

i . Vertices of triangles Vi and V′
i

should represent corresponding points. We expect the
relative position of P′

j to its surrounding triangle in
I ′ to be similar to the relative position of Pj to its
surrounding triangle in I because the structure of the
grid is preserved. This relative position for Pj can be
represented by linear combination

Pj =
3∑

k=1

wkV
k
i . (3)

Since the relative position of Pj and P′
j to their sur-

rounding triangles are similar, the following equation
should be satisfied for P′

j

P′
j =

3∑

k=1

wkV
′k
i (4)

where wk are computed in Eq. (3), and V′k
i (k = 1, 2, 3)

are unknown. We can estimate these unknown vari-
ables by solving the minimization problem

Edata =
∑

j

‖P′
j −

3∑

i=1

wkV
′k
i ‖2 (5)

for all points P′
j projected from the points cloud.

Since we have just a few corresponding points be-
tween I and I ′, many triangles may not contain any
points; hence, their vertices do not appear in Eq. (5).
To solve this problem, we added a term which con-
siders all vertices of the grid, similar to [12]. Since
the new camera pose and the original one are close
to each other, the relative positions of vertices in two
corresponding triangles should be similar. A relative
position proposed in [5] is utilized in this work.
Consider a triangle cell in the original frame, which

lies on the surface of the unit sphere. Each vertex
of this cell can be represented with respect to a local
coordinate system whose axes are the direction of the

Figure 3. A uniform triangular grid on the unit
sphere (left) which is used to preserve the struc-
ture of the input image, and a cell of this grid
(right) to explain the relative location of one of
its vertices with respect to other two vertices.

line connecting two other vertices and its 90 degrees
rotation (Fig. 3-right). This can be written as follows

V1 = V2 + α(V3 −V2) + βR90(V3 −V2) (6)

where R90 is a 90 degrees rotation matrix in the plane
on which the triangle lies, and α and β are the co-
ordinates of V1 with respect to V2 and V3. Since
we preserve the structure of the grid, the same rela-
tion should be satisfied for the corresponding cell in
the new frame. We consider this for all vertices of all
triangles. We will have the minimization term

Estruct =
∑

‖V′
2+α(V′

3−V′
2)+βR90(V

′
3−V′

2)−V′
1‖2
(7)

for all triangles in the grid.
To obtain the vertices of the grid in the output

frame, we solve a constrained minimization problem
whose objective function is

E = Edata + λEstruct (8)

and constraints are forcing each vertex to have unit
length because they should lie on the unit sphere. We
applied a simple Levenberg-Marquardt minimization,
which provided satisfying results.
After obtaining the grid in the output image, we

perform texture mapping to fill inside each triangle on
the surface of the unit sphere to synthesize the final
output.

5 Experimental Results

We applied our method on various videos shot by an
omnidirectional camera, LadyBug21. This system con-
sists of 6 cameras and is able to capture data from more
than 70 percent of the full sphere around it. Videos are
very shaky because the system was mounted on a hel-
met and carried by a pedestrian. Results show that
our approach removes shakes successfully.
First, we extract some trajectories from the input

video. We use SIFT for detecting and describing in-
terest points in the panoramic representation. Then,
interest points are transferred on the equivalent unit
sphere and next steps are performed considering the
unit sphere. Trajectories on the sky are removed be-
cause they are not useful in SfM. Our proposed SfM
method for spherical images is used to estimate the

1http://www.ptgrey.com/products/ladybug2/
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Figure 4. Feature trajectories before stabilization
on the original frame (left) and after on the syn-
thesized frame (right).

camera path and 3D structure. The original camera
path is smoothed to obtain a desired path. We ap-
ply the Gaussian filter element wisely to the location
component and quaternion representation of the ori-
entation component. If the camera had moved along
this desired path, the video would have not had shakes.
We synthesize a new video with respect to the desired
path.

To synthesize an output frame, we consider a uni-
form triangular grid on its corresponding spherical in-
put frame. This grid has 642 vertices and partitions
the surface of the unit sphere to 1280 triangles. The
corresponding grid for the output frame is estimated
using the method explained in section 4. Then, the
content of the input frame is transferred to the output
frame by mapping texture of each triangle from the in-
put frame to its corresponding triangle in the output
frame.

A comparison between point trajectories of the orig-
inal video and stabilized video can show how our
method works. If a video is shaky, its feature tra-
jectories will have many jitters but if it is smooth,
these trajectories will be smooth too. Trajectories in
(Fig. 4-left) are extracted from the original video, and
in (Fig. 4-right) from the stabilized video obtained by
the proposed approach. It is easy to see that the trajec-
tories in the output video are smooth while trajectories
in the input video have many jitters. This indicates
that our method succeeds to remove shakes.

6 Conclusion

This paper addresses the stabilization of omnidirec-
tional videos. One of the contributions of this pa-
per is proposing an SfM method for spherical images.
The original camera motion is estimated using this
SfM method and a desired trajectory is obtained by
smoothing the original motion. Then, a new video is
synthesized with respect to this desired path. This
work is the first method for stabilizing omnidirectional
videos. One of the advantages of using spherical im-
ages is that all representations of central omnidirec-
tional systems can be converted to the spherical rep-
resentation. Furthermore, in conventional videos the
resolution of the output video is lower than the input
video because frames are cropped to remove blank mar-
gins. In spherical images we can naturally overcome
this problem. Also, our method can work in presence
of dynamic objects because it uses a single image from
the input video to synthesize its corresponding output
frame. Experimental results on challenging real data
show that our method works successfully.
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