
Spectral-Differential Feature Matching and Clustering for Multi-body 
Motion Estimation 

Anton N. Averkin, Igor P. Gurov, Maxim V. Peterson, Alexey S. Potapov 

Saint Petersburg State University of Information Technologies, Mechanics and Optics 
49 Kronverksky ave., Saint Petersburg, 197101, Russia 

E-mail: ant-averkin@rambler.ru; gurov@mail.ifmo.ru; 
maxim.peterson@gmail.com; pas.aicv@gmail.com;  

 
 

Abstract 

System for estimating the motion of independently 
moving objects observed by a moving camera is presented. 
It consists of feature matching and multi-body motion 
estimating modules. Novel set of invariant features is 
proposed on the base of phase spectrum differentiation 
without information loss. Clustering the feature points 
and estimating the transformation model for each cluster 
are guided by criterion derived from the minimum de-
scription length principle that results in correct selection 
of number of clusters and family of transformations, as 
well as rejection of outliers. 

1. Introduction 

Reconstruction of motion models for simultaneously 
moving camera and several objects in a scene is a problem 
in the field of machine vision that receives increasing 
attention. Its solution can be used in different tasks such 
as mobile robots navigation or augmented reality. This 
problem can be separated into two tasks: matching the key 
points, and reconstruction of scene and motion structure. 

Existent invariant image representations, which are 
used in the first task, can be divided into complete and 
incomplete representations. Complete representations 
permit reconstruction of initial images with exactness up 
to transformation, relative to which invariance property is 
held. Some information about an image is additionally 
lost in the case of incomplete representations. 

Complete invariant representations of images are based 
on normalization. In particular, some characteristic scale 
and orientation can be found and then compensated re-
sulting in invariance. This technique is utilized by many 
widely used features such as SIFT and SURF [1]. Draw-
back of this approach is its sensitivity to precision of 
estimated characteristic scale and orientation. Incorrect 
estimations lead to loss of invariance of local features. 

Incomplete representations can be constructed on the 
base of Fourier-Mellin transform. This approach is less 
frequent in the task of matching indoor images, but can 
also be used showing good results [2]. However, such 
transforms lead to considerable loss of information (e.g. 
phase information of spatial spectrum in log-polar coor-
dinates) making local features less discriminative. 

In this work, we propose novel spectral-differential 
representation of image as the base of complete invariant 
representation without use of affine normalization. That is, 
this representation can be as robust as incomplete repre-

sentations and as discriminative as complete representa-
tions based on normalization. Developed representation is 
used in the task of key points matching. 

There also exist a lot of works devoted to solving the 
second task. However, the most of previous investigations 
are based on the assumptions that sequence of images 
includes motion of a single rigid body, i.e. whether cam-
era moves inside static scene or camera is static, and scene 
contains only one moving object [3]. 

More general case of dynamic scene with indepen-
dently moving objects and camera is of current 
importance. Algebraic approach to this task exists. This 
approach is based on generalized principal component 
analysis (GPCA) [4]. However, these methods are not too 
robust with respect to outliers occurring because of in-
correct matching of key points in a pair of consequent 
images. Amount of computations also quickly increases 
with increase of number of independent motion models. 

Geometric approach described in the paper [5] groups 
the key points into clusters corresponding to indepen-
dently moving objects, which motion can be described 
using models with different number of parameters. This 
method utilizes Bayesian approach to model estimation. 
Root-mean-square or maximum likelihood criteria are not 
enough, when selection between models with different 
number of parameters is to be carried out. 

In this work, we use the minimum description length 
principle (MDL [6]) to solve the problem of selection 
between models with different complexity. This principle 
has already been applied to the task of motion model 
selection for a sequence of images in the paper [7], in 
which displacement of each object was described using 
essential matrix in assumption of perspective projection. 
Proposed solution is based on random sampling of key 
points on a pair of images, which are then distributed 
between clusters and tracked on the consequent images. 

Here, criterion based on the MDL principle is intro-
duced that permits to divide the given array of key points 
into clusters, each of which is described by own affine or 
projective transformation and characterizes separate 
moving object. Novelty consists in clustering algorithm 
with automatic selection between different motion models 
and outlier rejection on the base of the MDL principle. 

2. Spectral-Differential Representation 

Let image f (x, y) be given. Consider its spectrum in 
continuous case 
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Spectrum of shifted image f'(x, y)=f(x–∆x, y–∆y) can be 

estimated in the form 
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Obviously, |F'(ω)|=|F(ω)| that makes amplitude spec-
trum convenient tool for invariant image representations. 
However, a half of information from any image is lost in it. 
Here, we propose new approach to achieve the same in-
variance property without loss of phase information. 

It can be seen from equation (1) that image displace-
ment results in shifts in harmonic phases proportional to 
their frequencies ωx, ωy and unknown values of dis-
placement Δx, Δy. Spectrum can be expressed in terms of 
amplitude and phase components: )()()( ωωω 
� ieAF . 

Spectrum of the shifted image takes the form: 
)()( ωω AA �	  and yx yx ����
�
	 ωω)()( ωω . 

Obviously, all the second-order partial derivatives with 
respect to ωx and ωy are invariant relative to shifts. 

Any second-order derivative of the phase can be com-
bined with invariable amplitude information in order to 
get complete shift-invariant representation of images: 
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Invariance can be achieved without explicit computa-
tion of phases. Consider phase component of spectrum in 
the form Ψ(ω)=exp(iφ(ω)) for the original image, and 
Ψ'(ω)=exp[i(φ(ω)–ωx ∆x–ωy ∆y)] for the shifted image. 
Differencing by ωx will result in 
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where sign * means complex conjugation. Now it can be 
easily proven that 
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and derivatives with respect to ωx can be replaced with 
derivatives with respect to ωy. Invariant representation 
can take form 
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Phase information remains in the proposed spec-
tral-differential invariant representation in contrast to 
traditional amplitude-spectral invariant representation. A 
little amount of information is lost because of differencing 
that makes this representation almost complete. It can be 
shown that this approach is applicable in discrete case 
also by replacing differentiation with finite differences. 

3. Local Spectral-Differential Features 

Well-known Fourier-Mellin transform of the given 
image consists of the following main steps. 

1) Amplitude spectrum A(ω) is calculated. As it was 
mentioned above, this representation is invariant to shifts. 
At the same time, scaling and rotation of the initial image 
results in scaling and rotation of its spectrum. 

2) Amplitude spectrum is transformed into log-polar 

coordinates A(ρ, θ). Scaling and rotation in Cartesian 
coordinates become shifting in log-polar coordinates. 

3) If one wants to solve the image matching problem, 
correlation of transformed spectra A(ρ, θ) and A'(ρ, θ) of 
two image can be calculated in order to estimate relative 
scaling and rotation angle. Then, shifts can be estimated 
after compensation of found angle and scale factor. If one 
wants to construct invariant representation, transformed 
amplitude spectrum A(ρ, θ) should be subjected to the first 
operation, i.e. DFT should be applied to A(ρ, θ) and am-
plitudes should be kept rejecting phase information. It 
could be easily seen that the resulting representation will 
be invariant with respect to similarity group. 

Here, we propose to use differentiation of spectra (2, 3) 
in the Fourier-Mellin transform instead of exclusion of 
phase information. As the result, one can obtain novel 
method for matching entire images, and novel invariant 
representation of images or descriptors of key points. 

Since fragments to be described and compared are 
taken around corresponding key points, centers of these 
fragments should have approximately zero shifts. Con-
sequently, there is no need to try to achieve invariance to 
shifts. Indeed, only characteristic scale and rotation (not 
shifts) are compensated in the methods based on norma-
lization. As the result, our modified Fourier-Mellin 
transform can be simplified in the context of the given 
task. The following steps should be performed. 

1. Calculating log-polar transform of image around 
given key point (x0, y0) obtaining f (ρ, θ | x0, y0). This 
transformation cuts a circle of some radius R=exp(0.5ρ). 

2. Applying one of operations of spectrum differentia-
tion obtaining FInvar(ωρ, ωθ | x0, y0) that gives 
spectral-differential features (SDF) as key point descrip-
tor. In practice, it is possible to take only a portion of 
low-frequency harmonics as a descriptor in order to re-
duce size of descriptor (or feature vector). 

Descriptors FInvar(ωρ, ωθ | xi, yi) and F'Invar(ωρ, ωθ | xj, yj) 
of two points from different images can be compo-
nent-wise compared in order to get similarity measure of 
key points that can be used in some feature-matching 
algorithm (i.e. nearest-neighbour). Normalization is ne-
cessary, because illumination level can vary. 

4. Multiple Motion Model Estimation 

Suppose that N key points xi=(xi, yi, 1)T on the first 
image and corresponding N points x'i=(x'i, y'i, 1)T on the 
second image are given. Some set of transformation fam-
ilies � �Mmm mT 1),( �px  projecting points from the first 
image into the second image is given, where рm is a pa-
rameter vector of m-th transformation family, and M is 
total number of transformation families. 

In this paper, we suppose that family, which particular 
transformation belongs to, is unknown a priori. In addi-
tion, coordinates of corresponding points in two images 
are determined with some errors, and considerable num-
ber of correspondences (outliers) can be determined 
incorrectly. Moreover, the given points should be divided 
into clusters, affected by independent transformations, 
and the number of clusters is also unknown. 

We consider family of homogenous affine transforma-
tion and family described by fundamental matrices. 
Homogenous affine transformation can be written in a 
form x'=Hax, where Ha is the affine matrix with 6 free 
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parameters. In the general case of perspective projection, 
relation between coordinates of corresponding points in 
two images can be described with the use of fundamental 
matrix F. This matrix specifies relation between coordi-
nates of points in the form x'TFx=0 that lay only one 
constraint in contrast to the affine transformation. 

The MDL principle states that such the model should 
be chosen that minimizes the description length of the 
data encoded with the model and description length of the 
model itself. Thus, application of the MDL principle to 
the task of clustering of identified key points in accor-
dance with their motion models requires estimation of 
description lengths of clustered points for each transfor-
mation family. Relation between coordinates of 
corresponding points can be written for arbitrary trans-
formation in the form x'i=Tm(xi, pm)+εi, where εi are 
vectors of deviations (i=1… Nk, Nk is the number of key 
points in the k-th cluster). Deviation vectors should be 
encoded separately in such the way that one can restore x'i 
from xi, pm and εi. That is, we consider description length 
of coordinates of points in the second image supposing 
that coordinates of key points in the first image are given. 

Consider one k-th cluster of points (k=1… K, K is the 
total number of clusters). In order to describe coordinates 
of these points on the second image, one needs to describe 

– parameters of transformation pm; 
– indices of key points belonging to the cluster; 
– deviations εi. 
Description length of transformation parameters de-

pends on their number. Calculation of affine 
transformation requires known correspondence of 3 pairs 
of points that yields 6 equations/parameters, and calcula-
tion of fundamental matrix requires known 
correspondence of 7 pairs of points that yields 7 equa-
tions/parameters [3]. Each component of the parameter 
vector should be described with some number of bits. 
Optimal precision of this description depends on the 
number of data elements, which are used in the model 
construction. Conventional estimation [6] of the np 
component vector parameter p description length for N 
data elements is Lp=0.5nplog2Nk. 

Indices of key points in the cluster can be described by 
kN

Nind CL 2log�  bits, because there are kN
NC  ways to 

select cluster consisting from Nk points. Description 
length of deviations depends on transformation family. 
We can assume that components of εi are independent and 
identically distributed random variables in the case of 
affine transformation. Then, one can calculate description 
length of deviations as Lε=2Nklog2(2-0.5σ|ε|), where 2-0.5σ|ε| 
is estimated mean-square deviation for both εx and εy. 

Fundamental matrix only tells that point belongs to 
some epilolar line. In order to encode coordinates of a 
point, one requires encoding its deviation from epipolar 
line εl, and its position along this line εa. Deviations from 
epipolar line could be small, while positions in corres-
ponding epipolar line could differ very much because of 
different points depth. Hence, these two displacements 
have very different distributions. Positions on epipolar 
lines can be encoded as displacements relative to some 
average value (e.g. computed via homography) that can 
also be considered as zero-point for disparity. This ze-
ro-point should be included as an additional parameter 
into the model, and the description length of deviations 
will take a form Lε=Nk(log2σl+log2σa). 

It can be seen that both families of transformation have 

now similar forms for deviations description length. Mo-
tion models from different families can be chosen using 
the sum of description lengths L=Lp+Lind+Lε. 

To perform clustering one needs to consider profit in 
description length achieved by utilizing motion models. 
When key point coordinates are encoded without motion 
models, each coordinate is encoded with log2S bits, where 
S is the linear size of images. Total profit for cluster with 
Nk points will be (2Nk log2 S–L) bits. Some points should 
be included into a cluster if this gives maximum positive 
profit in the description length. 

Overall clustering quality criterion takes form 

� ��
�

��
K

k
kktot LSNL

1
2log2 , (4) 

where Lk is the description length of k-th cluster of points 
encoded with chosen model. It is necessary to consider 
profits in description lengths, because there can be many 
outliers, which are not described by any model. 

Now, we can describe clustering algorithm. The task 
consists in determining such distribution of points in 
clusters, and constructing such motion models for them, 
which yield maximum profit in Ltot. The following algo-
rithm performs clustering with outlier rejection. 

1. Probable correspondences between key points in two 
images are obtained on the base of described SDF. 

2. Minimum number of point correspondences neces-
sary for motion model estimation is taken. Here, 7 random 
nearby points are taken. 

3. Parameters of transformations from each family are 
estimated. Affine transformation matrix is estimated us-
ing linear least squares method, and fundamental matrix is 
estimated using 7-point algorithm [3]. 

4. Every point not included into any cluster is consi-
dered in order to decide, whether its inclusion into the 
current cluster leads to increase of profit in the description 
length or not. Consequently, clusters are expanded with 
such correspondences of key points that maximize crite-
rion function. Thus, outliers are automatically accounted. 

5. Points added to the current cluster are excluded from 
consideration, and steps 2–4 are repeated, while genera-
tion of new cluster leads to profit in description length. 
Point correspondences not included into clusters at the 
end of work are assumed to be outliers. 

6. Steps 1–5 are performed many times with different 
random sampling (as in RANSAC algorithms). The best 
solution is chosen on the base of resulting Ltot value. 

5. Evaluation 

We used pairs of indoor and outdoor images taken from 
different points of view. In this paper, we didn’t consider 
the problem of key point detection. Any detection algo-
rithm can be used with almost any invariant feature 
transform (at least, with both SUFR and SDF). We tried to 
use as key points both conventional maxima in the dif-
ference of Gaussian pyramid and corners and centers of 
straight lines constructed on the base of extracted con-
tours. Relative matching performance appeared to be 
similar for different key point detection algorithms. 

At first, performance of SDF and SURF was compared 
independent of multi-body motion model estimation. 
Nearest-neighbour matching was used in order to com-
pare performance of features in the cleanest way. We 
considered 20 “difficult” indoor and outdoor image pairs. 
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It appeared that SDF give slightly better performance 
in average than SURF: 63% vs. 67% incorrect matches 
correspondingly. However, different methods work better 
for different images (see error rates for 5 images in the 
Table 1). Proposed features showed better performance 
for images with prominent scale, but they appeared to be 
more sensitive to displacements in positions of key points. 
Thus, SDF are promising, but somewhat slower. 

Table 1.  Error rates for SDF and SURF. 

Image pair Error rate, % 
No. SDF SURF 
1 64 79 
2 68 68 
3 61 58 
4 69 75 
5 57 55 

 
Fig. 1 demonstrates two results of feature matching on 

image pair using SDF and SURF. One can see that SDF is 
much less sensitive to scale variations than SURF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Results of feature matching: using SDF (a), 

using SURF (b). White lines correspond to correct 
matches, while black lines correspond to false matches. 

Then, we tested the criterion for type of motion model 
selection separately from clustering problem using im-
ages with static scenes. It was confirmed that the deduced 
MDL criterion permits to select the model with adequate 
complexity in this task. In particular, selection of less 
complex model can be seen in Fig. 2. It shows two images 
taken from rotating camera and found adequate trans-
formation. At that, affine model gives 1085 bit profit, 
whereas fundamental matrix model gives 1070 bit profit. 

 

  
Figure 2.  Pair of images and identified key points 

with displacements described by affine transformation. 

Finally, we tested clustering algorithm using images of 
non-static scenes taken from moving camera. In general, 
it showed adequate results for both determination of 
number of motion models and outliers (Fig. 3). 

 
Figure 3.  Example of key point clustering. 

Conclusions 
The task of corresponding key point identification with 

consequent clustering by means of multi-body motion 
estimation was addressed. Key point matching was car-
ried out with proposed local invariant feature transform 
based on modified Fourier-Mellin transform. Modifica-
tion consisted in replacement of amplitude spectrum 
calculation with novel operation of phase spectrum dif-
ferentiation, which doesn’t lead to information loss. It was 
shown that proposed feature transform outperforms 
SURF in the case of scale changes. Additional research 
can help to further improve performance of this method. 

Criterion of clustering quality was proposed on the 
base of the MDL principle. This criterion was used to 
solve the following problems: selection of the adequate 
number of clusters, selection of family of transformation 
models with different complexity, and rejection of outliers. 
Clustering algorithm was developed that optimizes de-
duced criterion. Adequacy of achieved results was 
ascertained experimentally. Further investigations should 
be devoted to the problem of search for the best clustering 
hypothesis, since random sampling used to avoid local 
extremes in criterion function could be rather slow. 

Work is supported by Russian Federation President’s 
grant Council (MD-2040.2010.9) and Ministry of Educa-
tion and Science of the Russian Federation. 
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