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Abstract

To realize the real time dense stereo disparity map
(DDM) running at a video rate of 30 fps, the dynamic
time warp algorithm (DTW) is time wise a bottle neck
despite its robustness for stereo matching. The DTW
method requires to calculate a large similarity matriz
S of the size N2 for the raster size N, if pizel-by-pizel
matching is attempted. The computation time to cal-
culate S is significant for real-time systems and embed-
ded hand-held devices. Two methods, coarse quantiza-
tion method and hump detection method, to reduce N
by sparse feature sampling are proposed in this paper.
Both proposed methods reduce N much below the raster
size, and create a set of sparse samples without sacrific-
ing the spatial resolution for stereo matching. The size
of the sparse set is typically N = 30 and N = 15 for
each respective method, compared with the raster size
N = 320. Thus, the calculation time of DDM is dra-
matically improved by more than 100 times. By using
the proposed methods, a real-time system was realized
on the Windows platform.

1 Introduction

The dense stereo disparity map, i.e. image based
distance measurement has been developed for appli-
cations such as robotic vision and video surveillance.
Two small video cameras embedded in the hand-held
computer or game controller can be turned into a dis-
tance image sensor or a range nder. Electrical retina
stimulation with the implanted 2D electrode array that
has recently been reported is potentially capable for
blind people to regain vision with the technology of
BMI (Brain Machine Interface). The dense disparity
map is denitely one important mode of articial vi-
sion to sense the distance by vision, when such BMI is
fully developed. The challenge is to perform frame-by-
frame image processing fast enough to keep up with a
video rate. [1] The objective of study is to develop a
robust and fast system capable of displaying the dense
stereo disparity maps continuously at a video rate.

2 Stereo Matching by Dynamic Time Warp
Algorithm

Stereo matching in the binocular image pair is to nd
two corresponding feature points, one in the left image
and the other in the right image. The distance between
the corresponding points are referred to as stereo dis-
parity that is inversely proportional to the distance to
the point in the 3D space. Finding the correspondence
of all points in a sequence to those in another sequence
is a problem of optimization to keep the error of mis-
matching to be minimum. The Dynamic Time Warp

164

Original Image Right

Original Image Left

50 100 150 200 250 300 350

50 100 150 200 250 300 8350

Quantized Left Quantized Right

Raster Left

Raster Right

W

50 100 150 200 250 300 350
Median filter Quantized Right

Ao

50 100 150 200 250 800 850
Boundaries Right

—
200 200
150 150
100 ff’\,\ 100

50 m\f 50

50 100 150 200 250 300 350
Median filter Quantized Left

100
50 {\ 50
oLl I 0
50 100 150 200 250 300 350
Boundaries Left

o= 200 o

150
100 g

5 = | | 55 = | Jac 'f - -
bt

0 0
0 100 160 200 260 300 350 B 1

160 200 250 300 350

Figure 1. Original and Coarsely quantized im-
ages, and waveforms of median ltered images,

that of coarse quantization, and transitional
points.

Algorithm (DTW) [7], or Dynamic Programming (DP)
is the algorithm for stereo matching when the pixel
points are arranged in a sequence of distance. Due to
this constraint, the DTW is particularly useful to nd

stereo correspondence in the raster scanned 1D raster
proles (waveforms). The DTW is one of the robust

algorithms which is known to work even for the image
having some occluded objects, meaning that an object
is seen from a camera but not from the other. When
the search for matching is exhaustively done for each
and every pixel in the raster, the process is time con-
suming as N is the raster size, and N2 is very large.
However, if feature points are sparsely sampled, for ex-
ample at edges or the peak of humps, N2 can be made
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Figure 2. Local decision making in the cost matrix C by the DTW dynamic programming

considerably smaller.

In the DTW algorithm [7], the similarity matrix S
plays the key role in the optimization process. S indi-
cates how similar the nth pixel point of the sequence
I, is to the mth pixel point of I,.

L2
s(n,m) = Z [Ie(n+ k) — I.(m + k)|
k=—L/2
for a window size L+1. Stereo matching is the problem
to minimize the penalty to match dissimilar points to
match all points in I; and I,.. Dene the left pixel array

up to the nth element, and the right pixel array up to
the mth element as

{12(1)715(2)a ) IZ(Z) ) IZ(”)}
{1:(1),1(2),- -+, I.(§), -+, I (m) }

The element of the cost matrix C is given by

len
Yiim

C(X1ms Yiom) =

C(Xlu-nfly le---mfl)
s(n,m) +min { C(X1.n, Y1om—1)

C(Xlu-n—la Ylm)
C(X1...n, Y1...;;y) is the minimum cost to match the nth
pixel point of I, and the mth pixel point of I, among
all previous matches of < n and < m. There are only
three choices to match Iy(n) and I,(m). Given the
costs to match up to Iy(n—1) and I.(m—1), I;(n—1)
and I.(m), Ip(n) and I.(m — 1), the smallest of the
three costs plus the similarity s(n,m) is the cost to
match I;(n) and I.(m). Back tracking the matrix C
shown in Fig. 2 from the right bottom corner yields
the optimum path that denes the best matching of
all pixels. The size of a raster waveform is N = 320
for the CIF image. The size of the similarity matrix S
and the cost matrix C is N? = 102,400. Furthermore,
the window size is practically as large as L = 10. The
required computation for S and C is about 1 million
calculations, which substantially make the implemen-
tation of the DTW algorithm dicult in video appli-
cations.

3 DTW Implementation for Coarsely Quan-
tized Raster Waveforms

If a raster waveform is coarsely quantized into sev-
eral levels, pixel values are grouped by the levels. Uni-
form runs of a continuous quantization level is regarded
as originated from the same video object. A run is
dened by the starting edge and the ending edge so
that the same disparity can be assigned to the whole
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Figure 3. Similarity matrix S, cost matrix C
and the optimal path in white (top), corre-
spondence of all one-to-one matched transitional
points (middle), and disparity prole in red (bot-
tom)

run length. However, the raster waveform captured
from a video camera is aected by various sources of
noise such as photon noise, thermal noise, and elec-
tronic noise. The source image, generally, requires
some sort of denoising. Low-pass ltering removes
high-frequency noise, but aects the slope of edges
where important feature information, i.e. position, is
recorded. If edges are smeared, the stereo disparity
to be determined by corresponding edges becomes less
accurate. The median lter, statistical nonlinear lter-
ing removes noises such as salt and pepper noise, but
the sharpness of edges is not altered.

2D 5x5 median lter is eective to denoise the

source images. The coarse quantization applied to the
median ltered image produces a patchy segmented
image as shown in Fig. 1. The raster waveforms of
the median ltered and coarsely quantized image are
shown also in Fig. 1. Then, all transitional points and
run-lengths are registered. Transitional points where
jump occurs are shown in the bottom row of Fig. 1
with red lines. The number of transitional points is
typically about 30, whereas the raster size is 320.
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Figure 4. Sequence of digital signal processing
(DSP) for hump detection: (a) Original left and
right image, (b) Raster waveforms at the cursor
line of (a), (c¢) Processed by 7 point 1D median
Iter, (d) processed by 5 point FIR smoothing l-
ter, (e) First derivative of waveforms in (d) and
the threshold e, (f) Detected humps indicated
by a start line in black, a stop line in greed, and
a circle at the peak of the hump.

The similarity matrix S is constructed from the tran-
sitional points. The element of the S matrix is modied
to include the proximity term not to match pixels of
too far apart.

L/2

s(n,m) = Z [Te(n+ k) —

k=—L/2

Ir(m + k)| + a(jn —m])

Where, Iy(.) and I,.(.) are the median ltered wave-
orms. Since the number of the transitional points is
roughly 10% of the raster size, the calculation time to
construct the S matrix is much shorter than the case
of pixel-to-pixel matching, i.e. N2 = 0.12 = 1%. The
similarity matrix S and the cost matrix C are shown
in Fig. 3. The minimum path resulted from the DTW
algorithm is shown by the white zig-zag line. Vertical
or horizontal line segments mean the multiple match-
ing from a point, likely due to the occlusion. When
the nth point of the left image is found to correspond
to the mth point in the right image, the disparity is
dened as

disaprity(n,m) =m —n

In calculating the disparities, the points of multiple
matching are ignored. The correspondence of all valid
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Figure 5. Correspondence of humps in the left
and right waveforms, and the calculated dispari-
ties
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Figure 6. Dense disparity map by the coarse
quantization method (top), and by the hump de-
tector (bottom) of an image from the Tsukuba
data base.

one-to-one matches are shown in Fig. 3. The disparity
prole is shown in red in Fig. 3.

4 Sparse Correspondence Based on Major
Humps in the Raster Prole

Another approach to determine the sparse corre-
spondence of features is to use major humps that exist
in a raster waveform. Humps in the raster scan line
generally represent image objects. The hump means
an upward convex shape dened by a sharp rising and
a falling edge. Mathematically, a hump is dened for
the waveform f(t) for t € [t1,t2] with the condition
that satises,

df (t1) df (t2)
dt a =

€ species the steepness of the slope. Since the
hump here is dened only in terms of the derivatives
of the raster waveform, a hump is not necessarily a
single modal hump, but it could have multiple modal

> +e,
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Figure 7. The screen shot of the real-time video
system continuously displaying the DDM

points (peaks). Since hump detection uses the deriva-
tive waveforms, it is important to denoise waveforms
without altering the hump prole. The following dig-
ital signal processing (DSP) is applied to successfully
detection the hump and extract sparse features. (1) 7
point median lter, (2) 5 point symmetric smoothing
FIR lter, (3) dierentiate the denoised and smoothed
left and right waveforms, (4) apply the threshold €, and
(5) register the duration, peak position, peak value of
each hump. This sequence of DSP is illustrated in
Fig. 4. The humps found by the procedure are shown
in (f) of Fig. 4 for the left and right waveform at the
raster scan line in white. The thresholds applied to
the rst derivative, =e are shown in (e) of Fig. 4 with
green lines.

For each hump detected, say ith hump of the left,
duration dr (i) of the hump, peak value vy (i) are
recorded. Similarly, dr(j), vg(j) are recorded for the
jth hump of the right waveform. The element of the
similarity matrix S in this case is

s(k,0) = aldr(i) — dr(j)| + BloL(i) — vr(j)] + i — jl

Fig. 5 shows the stereo matching with the DTW algo-
rithm applied to the sparse features of the humps. The
numbers of humps found for this particular scan line
are 9 for the left, and 9 for the right waveform. In opti-
mization, a set of parameters («, 3,7) = (0,0.67,0.33)
was used. Using the correspondence between the left
and right humps shown in Fig. 5, the disparity prole
of this scan line is shown in Fig. 5.

The DDM for a pair of stereo images in the Tsukuba
database is shown in Fig. 6 for the coarse quantiza-
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tion method (top), and for the hump detector method
(bottom). The image of coarse quantization and the
DDM are shown with and without contour lines su-
perimposed. The DDM for the hump detector method
shows dark borders because no disparity is measured in
between the adjacent humps. In the DDM, the greater
the disparity, the brighter is the pixel. The closer ob-
jects are shown with the brighter intensity.

5 Real-time DDM System

The system is a software based system except that
two USB CCD cameras (Webcam) were used. As
two identical USB cameras are simultaneously used for
video capturing, the driver has to be of type that rec-
ognizes dierent units of the same camera as separate
units. Only a few USB cameras such as QuickCam
Pro 4000, QuickCam Pro 9000, Watchport/V2 and
Microsoft LifeCam VX-700 can be used in the multi-
camera applications. The spacing between the two
cameras is set between 6 cm to 10 cm. The programs
were written in Visual C# 2008 Express (C language).
XVideoOCX (Marvelsoft) was used to interface USB
cameras to the programs, mainly utilizing its real-time
video capturing capability. For video rate control of
the developed programs, the timer interrupt caused by
the end of frame was used. Fig. 7 is a screen shot of
the developed system capable of showing the DDM in
real-time at a video rate of about 15 fps, a little short
of the aimed target.
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